Citation: | ZHUO Wenbo, TAN Guobi, CHEN Qiuren, HOU Zehong, WANG Xianhui, HAN Weijian, HUANG Li. Multi-objective optimization of resistance spot welding process parameters of ultra-high strength steel based on agent model and NSGA-Ⅱ[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 20-25. DOI: 10.12073/j.hjxb.20230317002 |
In order to find the best welding process parameters for resistance spot welding of ultra-high strength steel, a three-factor and five-level flat plate lap spot welding experiment designed by orthogonal test method was carried out. With welding time, welding current and electrode pressure as adjustable process parameters, the nugget diameter, indentation depth, the tension-shear strength and spatter were used as the quality evaluation indicators of welded joints. Based on Gaussian process regression and BP neural network, a proxy model of the relationship between the process parameters and the quality evaluation indicators of welded joints was established. The training results showed that the accuracy of the model was very high. Finally, the multi-objective optimization was realized by using the genetic algorithm NSGA-Ⅱ with elite strategy and non-dominated sequencing, and the optimal pareto solution set between the evaluation indicators was obtained. The relative error value of each evaluation model was very small, which indicated that the optimization method had good prediction effect and stability. By using less experimental data, the method of establishing the optimization model had important guiding value for the selection of the best welding process parameters in resistance spot welding and other welding fields.
[1] |
Volkers S, Somonov V, Bohm S, et al. Influence on the microstructure of laser beam welds of high-strength steels[J]. Lightweight Design Worldwide, 2017, 10(4): 40 − 45.
|
[2] |
高丽, 周月明, 刘俊亮, 等. 双相钢的研究进展及应用[C]//第七届(2009)中国钢铁年会大会论文集(中), 2009: 938-942.
Gao Li, Zhou Yueming, Liu Junliang, et al. Research progress and application of dual-phase steel [C]//Proceedings of the 7th (2009) China Steel Annual Conference (middle), 2009: 938-942.
|
[3] |
Shi G, Westgate S A. Resistance spot welding of high strength steels[J]. International Journal for the Joining of Materials, 2004, 16(1): 9 − 14.
|
[4] |
Eusebio J M, Jose A E, Valentin M, et al. Optimization of geometric parameters in a welded joint through response surface methodology[J]. Construction and Building Materials, 2017, 154: 105 − 114. doi: 10.1016/j.conbuildmat.2017.07.163
|
[5] |
Yang Y, Cao L, Wang C, et al. Multi-objective process parameters optimization of hot-wire laser welding using ensemble of metamodels and NSGA-II[J]. Robotics and Computer-Integrated Manufacturing, 2018, 53: 141 − 152. doi: 10.1016/j.rcim.2018.03.007
|
[6] |
陶永杰. 面向低碳制造的铝合金薄板激光搅拌焊接工艺参数优化[D]. 武汉: 华中科技大学, 2021.
Tao Yongjie. Optimization of laser stir welding process parameters of aluminum alloy sheet for low-carbon manufacturing [D]. Wuhan: Huazhong University of Science and Technology, 2021.
|
[7] |
吕小青, 王旭, 徐连勇, 等. 基于组合模型的MAG焊工艺参数多目标优化[J]. 焊接学报, 2020, 41(2): 6 − 11. doi: 10.12073/j.hjxb.20190629001
Lü Xiaoqing, Wang Xu, Xu Lianyong, et al. Multi-objective optimization of MAG welding process parameters based on combination model[J]. Transactions of the China Welding Institution, 2020, 41(2): 6 − 11. doi: 10.12073/j.hjxb.20190629001
|
[8] |
Djuric A, Mili D, Klobar D, et al. Multi-objective optimization of the resistance spot-welding process parameters for the welding of dual-phase steel DP500[J]. Materials and Technologies, 2021, 55(2): 201 − 206.
|
[9] |
Zhao D, Ivanov M, Wang Y, et al. Multi-objective optimization of the resistance spot welding process using a hybrid approach[J]. Journal of Intelligent Manufacturing, 2020, 32: 2219 − 2234.
|
[10] |
Zhang G, Lin T, Luo L, et al. Multi-objective optimization of resistance welding process of GF/PP composites.[J]. Multidisciplinary Digital Publishing Institute, 2021, 13(15): 2560.
|
[11] |
姚煜, 胡涛, 付建勋, 等. 小样本分散数据的回归建模和多目标优化[J]. 上海大学学报(自然科学版), 2022, 28(3): 451 − 462.
Yao Yu, Hu Tao, Fu Jianxun, et al. Regression modeling and multi-objective optimization of small sample scattered data[J]. Journal of Shanghai University (Natural Science Edition), 2022, 28(3): 451 − 462.
|
[12] |
许方敏, 许忠斌, 朱科, 等. 基于高斯过程回归的注塑质量多目标优化方法[J]. 塑料工业, 2022, 50(4): 94 − 98,122. doi: 10.3969/j.issn.1005-5770.2022.04.015
Xu Fangmin, Xu Zhongbin, Zhu Ke, et al. Multi-objective optimization method for injection quality based on Gaussian process regression[J]. Plastic Industry, 2022, 50(4): 94 − 98,122. doi: 10.3969/j.issn.1005-5770.2022.04.015
|
[13] |
Palanivel R, Dinaharan I, Laubscher R F. Application of an artificial neural network model to predict the ultimate tensile strength of friction welded titanium tubes[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41: 1 − 13. doi: 10.1007/s40430-018-1505-x
|
[14] |
杨亚超, 全惠敏, 邓林峰, 等. 基于神经网络的焊机参数预测方法[J]. 焊接学报, 2018, 39(1): 32 − 36. doi: 10.12073/j.hjxb.2018390008
Yang Yachao, Quan Huimin, Deng Linfeng, et al. Prediction method of welding machine parameters based on neural network[J]. Transactions of the China Welding Institution, 2018, 39(1): 32 − 36. doi: 10.12073/j.hjxb.2018390008
|
[15] |
刘艺繁, 阎春平, 倪恒欣, 等. 基于GABP和改进NSGA-Ⅱ的高速干切滚齿工艺参数多目标优化决策[J]. 中国机械工程, 2021, 32(9): 1043 − 1050. doi: 10.3969/j.issn.1004-132X.2021.09.005
Liu Yifan, Yan Chunping, Ni Hengxin, et al. Multi-objective optimization decision of high-speed dry cutting gear hobbing process parameters based on GABP and improved NSGA-Ⅱ[J]. China Mechanical Engineering, 2021, 32(9): 1043 − 1050. doi: 10.3969/j.issn.1004-132X.2021.09.005
|
[1] | SHI Ye, LEI Lei, YAN Ming, SONG Chunyu. Quantitative analysis of fatigue service failure law of 5182 aluminium alloy clinched joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 75-81. DOI: 10.12073/j.hjxb.20231219005 |
[2] | WANG Hongyu, HUANG Jinlei, CHEN Sheng, ZHU Jian, MAO Jizhou. Analysis of the theory and temperature field of additive manufacturing with powder core wire based on Cu-Al-Fe alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 111-119. DOI: 10.12073/j.hjxb.20220519002 |
[3] | MIAO Yugang, LI Chunwang, ZHAO Huihui, ZOU Junpan, ZHANG Peng. Characteristic analysis of copper/steel composite joint bypass-current wire-heating PAW on additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 95-99. DOI: 10.12073/j.hjxb.2019400134 |
[4] | WAN Rui1,2, LUO Yi1,2, ZHU Liang1,2, XU Jie1,2. Analysis of the resistance characteristics of nugget nucleation in the resistance spot welding with TiO2 powder addition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 71-74. DOI: 10.12073/j.hjxb.2018390071 |
[5] | LU Lin, SUN Jia, WANG Hongmei, WANG Liqiang. Quantitative analysis of solder powder particle based on morphology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(10): 97-100. |
[6] | GAO Liwen, XUE Jiaxiang, CHEN Hui, LIN Zhihui, LIANG Yongquan. Evaluation on CO2 arc welding stability based on quantitative analysis of class frequency distribution of short-circuit time[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (7): 43-46. |
[7] | SUN Lei, YUAN Jinping, ZHAO Junjun, LIANG Zhijie. Quantitative analysis on interaction between corrosion and wear of NiCrBSiMo laser cladded coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 105-108. |
[8] | GAO Liwen, XUE Jiaxiang, CHEN Hui, ZHANG Xue, Wang Ruichao. Quantitative evaluation on metal transfer process stability of arc welding based on autocorrelation analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 29-32. |
[9] | ZENG Huilin, DU Zeyu, HUANG Fuxiang. Analysis on key technologies for pipeline internal circumferential automatic welding machine with multi-torch[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 77-80. |
[10] | KONG Liang, YU Hailiang, JIN Xin, WU Yixiong. Quantitative analysis method of geometrical precision quality on precision welding structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 85-88. |
1. |
张普,曹四龙. Al_2O_3+TiO_2复合颗粒对激光熔覆Inconel 718基润滑涂层显微组织及高温磨损行为的影响研究. 材料保护. 2024(06): 8-19 .
![]() | |
2. |
魏来,李丹,董振. 原位自生(Ti, V)C堆焊层的耐磨性能. 沈阳工业大学学报. 2023(01): 43-47 .
![]() | |
3. |
刘海浪,卢儒学,陈健,徐珖韬,张倩. 镍基合金电子束熔覆表面改性及高温耐磨性研究. 金属热处理. 2021(04): 161-166 .
![]() | |
4. |
吴雁楠,黄诗铭,朱平,马振一,兰博,何翰伟,郝博文. 原位碳化钛颗粒增强镍基喷焊层的组织与性能. 热加工工艺. 2021(22): 96-98+102 .
![]() | |
5. |
马强,陈明宣,孟君晟,李成硕,史晓萍,彭欣. 纯铜表面氩弧熔覆TiB_2/Ni复合涂层组织及耐磨性能. 焊接学报. 2021(09): 90-96+102 .
![]() | |
6. |
王永东,杨在林,张宇鹏,朱艳. Y_2O_3对原位自生TiC增强Ni基涂层组织和性能影响. 焊接学报. 2020(02): 53-57+100 .
![]() | |
7. |
陈鹏涛,曹梅青,吕萧,仇楠楠. 氩弧熔敷原位合成ZrC-TiB_2增强铁基涂层的组织与性能. 上海金属. 2020(05): 15-20 .
![]() |