Citation: | REN Daxin, CONG Lingxiang, HAN Ronghao, SONG Gang, LIU Liming. Study on friction stir welding of magnesium alloy with backing plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 23-30. DOI: 10.12073/j.hjxb.20230104001 |
In conventional friction stir welding, the length of the stirring pin needs to be strictly matched with the thickness of the welded plate. A too-long or too-short stirring pin will adversely affect the welding effect. To solve this limitation, this paper proposes a new welding process that adds a backing plate of the same material with appropriate thickness to the back of the weld seam. In this process, the length of the stirring pin is greater than the thickness of the welded plate, and the backing plate is fused with the base metal. On the one hand, the requirement for stirring pin length is reduced. On the other hand, the adverse effects of weld seam thinning can be eliminated. The butt welding of 1.5 mm thick AZ31B magnesium alloy was studied by this method. The maximum tensile strength of the weld joint can reach 91.19% of the base metal. In addition, the microstructure and microhardness distribution of the weld beam cross-section were analyzed. The optimal process parameters were obtained by the established convolutional neural network model, and the distribution of joint tensile strength with the change of parameters was predicted.
[1] |
Cao H J, Li S Q, Zhang Y G, et al. Mg2Sn-induced whisker growth on the surfaces of Mg/Sn/Mg ultrasonic-assisted soldering joints[J]. China Welding, 2022, 31(11): 47 − 59.
|
[2] |
刘坤, 李洁, 王浩, 等. 镁合金焊接凝固裂纹敏感性评价及晶间液相回填规律分析[J]. 焊接学报, 2023, 44(9): 9 − 15. doi: 10.12073/j.hjxb.20221126001
Liu Kun, Li Jie, Wang Hao, et al. Evaluating solidification cracking susceptibility of Mg alloys and intergranular liquid backfilling during welding[J]. Transactions of the China Welding Institution, 2023, 44(9): 9 − 15. doi: 10.12073/j.hjxb.20221126001
|
[3] |
闫志峰, 王卓然, 王树邦, 等. AZ31 镁合金双面对称搅拌摩擦焊接头疲劳性能[J]. 焊接学报, 2022, 43(6): 61 − 68.
Yan Zhifeng, Wang Zhuoran, Wang Shubang, et al. Fatigue properties of AZ31 magnesium alloy welded joint by double-sided friction stir welding[J]. Transactions of the China Welding Institution, 2022, 43(6): 61 − 68.
|
[4] |
Wang S, Yan, Gu Z. Weld formation, microstructure evolution and mechanical property of laser-arc hybrid welded AZ31B magnesium alloy[J]. Metals (Basel), 2022, 12(4): 696. doi: 10.3390/met12040696
|
[5] |
Lingampalli B, Dondapati S. Corrosion behaviour of friction stir welded ZM21 magnesium alloy[J]. Materials Today:Proceedings, 2021, 46: 1464 − 1469. doi: 10.1016/j.matpr.2021.03.394
|
[6] |
Sivashanmugam N, Harikrishna K L, Koteswara Rao S R, et al. Mechanical and corrosion characteristics of micro-arc oxidized magnesium alloy (ZE41) friction stir welds in modified SBF[J]. Physica Scripta, 2023, 98: 105901. doi: 10.1088/1402-4896/acf350
|
[7] |
Xu Y, Ke L M, Mao Y Q, et al. Friction stir welding of aluminium to magnesium: a critical review[J]. Materials Science and Technology, 2022, 38(9): 517 − 534. doi: 10.1080/02670836.2022.2062642
|
[8] |
Tolun F. Evaluation of welding parameters effects in friction stir welding of AZ31B Mg alloy[J]. Kovove Materialy-Metallic Materials, 2022, 60(2): 109 − 120.
|
[9] |
Balaji S, Aadithya B S, Balachandar K. Conventional and underwater friction stir welded AA2024-T351 aluminium alloy - a comparative analysis[J]. World Journal of Engineering, 2020, 17(6): 795 − 801. doi: 10.1108/WJE-09-2019-0270
|
[10] |
Saravanakumar R, Rajasekaran T, Pandey C, et al. Mechanical and microstructural characteristics of underwater friction stir welded AA5083 Armor-Grade aluminum alloy joints[J]. Journal of Materials Engineering and Performance, 2022, 31: 8459 − 8472. doi: 10.1007/s11665-022-06832-2
|
[11] |
武传松, 刘小超, 高嵩. 采用辅助能量的搅拌摩擦焊新工艺[J]. 焊接, 2015(10): 9 − 17. doi: 10.3969/j.issn.1001-1382.2015.10.004
Wu Chuansong, Liu Xiaochao, Gao Song. New processes of secondary energy assisted friction stir welding[J]. Welding & Joining, 2015(10): 9 − 17. doi: 10.3969/j.issn.1001-1382.2015.10.004
|
[12] |
Zhou Z, Yue Y, Ji S, et al. Effect of rotating speed on joint morphology and lap shear properties of stationary shoulder friction stir lap welded 6061-T6 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(5-8): 2135 − 2141. doi: 10.1007/s00170-016-8924-6
|
[13] |
邓黎鹏, 柯黎明, 刘金合. 基于压焊原理的搅拌摩擦焊匙孔填补技术[J]. 焊接学报, 2019, 40(6): 107 − 111.
Deng Lipeng, Ke Liming, Liu Jinhe. A key-hole filling technology for friction stir welding based on the theory of pressure welding[J]. Transactions of the China Welding Institution, 2019, 40(6): 107 − 111.
|
[14] |
Raj D, Biswas P. Experimental investigation of the effect of induction preheating on the microstructure evolution and corrosion behaviour of dissimilar FSW (IN718 and SS316L) joints[J]. Journal of Manufactaing Processes, 2023, 95(3): 143 − 159.
|
[15] |
Zhou C, Yang X, Luan G. Effect of root flaws on the fatigue property of friction stir welds in 2024-T3 aluminum alloys[J]. Materials Science & Engineering:A, 2006, 418(1): 155 − 160.
|
[16] |
宋建岭, 赵英杰, 孙广达, 等. 搅拌针长度对2A14铝合金锁底结构搅拌摩擦焊接头组织和性能的影响[J]. 机械工程材料, 2020, 44(12): 18 − 23. doi: 10.11973/jxgccl202012003
Song Jianling, Zhao Yingjie, Sun Guangda, et al. Effect of pin length on microstructure and properties of friction stir welded joint of 2A14 aluminum alloy lock bottom structure[J]. Materials for Mechanical Engineering, 2020, 44(12): 18 − 23. doi: 10.11973/jxgccl202012003
|
[17] |
郭超. 基于垫板/凹槽设计铝合金FSW接头完整性及力学性能研究[D]. 南京: 南京航空航天大学, 2019
Guo Chao. Research on integrity and mechanical properties of friction stir welding of aluminum alloy adopting upper sheet/grooved backing plate[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
|
[18] |
Mengistie A K, Bogale T M. Development of automatic orbital pipe MIG welding system and process parameters’ optimization of AISI 1020 mild steel pipe using hybrid artificial neural network and genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2023, 128: 2013: 2028.
|
[19] |
Rawa J H, Dehkordi M H, Kholoud M J, et al. Using the numerical simulation and artificial neural network (ANN) to evaluate temperature distribution in pulsed laser welding of different alloys[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 107025. doi: 10.1016/j.engappai.2023.107025
|
[20] |
Kim Y G, Fujii H, Tsumura T, et al. Three defect types in friction stir welding of aluminum die casting alloy[J]. Materials Science & Engineering:A, 2006, 415(1): 250 − 254.
|
[21] |
孙国芹, 陈亚静, 曹方莉, 等. 2219-T6铝合金搅拌摩擦焊接头疲劳性能[J]. 北京工业大学学报, 2015, 41(11): 1670 − 1674. doi: 10.11936/bjutxb2015050054
Sun Guoqin, Chen Yajing, Cao Fangli, et al. Fatigue property research of friction stir welded joints for 2219-T6 aluminum alloy[J]. Journal of Beijing University of Technology, 2015, 41(11): 1670 − 1674. doi: 10.11936/bjutxb2015050054
|
[22] |
Neto D M, Neto P. Numerical modeling of friction stir welding process: a literature review[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65(1-4): 115 − 126. doi: 10.1007/s00170-012-4154-8
|
[1] | ZHAO Pengfei, WANG Xuhao, GUO Yang, WANG Ting, ZHANG Yusheng, XU Jian, MAO Guijun. Effect of welding speed on microstructure and mechanical properties of electron beam welded joints of 12Cr heat-resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 55-62. DOI: 10.12073/j.hjxb.20240507004 |
[2] | WANG Chungui, ZHAO Yunqiang, Deng Jun, Dong Chunlin, You Jiaqing. Microstructure evolution and mechanical properties of robotic friction stir welded joints of 2024-T4 ultra-thin aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 49-54. DOI: 10.12073/j.hjxb.20201208002 |
[3] | GUO Shun, WANG Pengxiang, ZHOU Qi, ZHU Jun, GU Jieren. Microstructure and mechanical properties of bimetallic intertexture structure fabricated by plasma arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 14-19. DOI: 10.12073/j.hjxb.20201125004 |
[4] | LIN Panpan, LIN Tiesong, HE Peng, WANG Maochang, YANG Hangao. Microstructure and mechanical property of Al2O3/Ti joint with biocompatibility[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 16-23. DOI: 10.12073/j.hjxb.2019400175 |
[5] | LIU Kaixuan, SUN Zhuanping, YANG Xinqi, DU Bo, SONG Jianling. Microstructure and mechanical properties of friction plug welding for friction stir welded aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 118-125. DOI: 10.12073/j.hjxb.2019400165 |
[6] | ZHANG Man, WANG Pengfei, ZHANG Lincai, LIN Yuebin. Microstructure and mechanical properties of Cu/Al joint brazed with Zn-Al-Ag filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 55-58. |
[7] | QIAO Jisen, YU Jiangrui, GOU Ningnian, YUAN Xiaoer. Development of microstructure influence on mechanical properties of fusion welding joints of aluminium alloy 2A12[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 5-8. |
[8] | HAN Xianpeng, XUE Songbai, Gu Liyong, GU Wenhua, ZHANG Xin. Effect of gallium on microstructure and mechanical properties of Ag-Cu-Zn filler metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 45-48. |
[9] | YAO Wei, GONG Shui-li, CHEN Li. Microstructure and mechanical properties of laser welded joint of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 69-72,76. |
[10] | XIE Yong-hui, XIONG Hua-ping, MAO Wei, CHENG Yao-yong. Microstructure and mechanical propertites of SiC joint brazed with heat resistant active brazing alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (3): 55-57. |
1. |
陈昕航,徐新胜,曹立,吴松泽,陆弘毅. 基于残差修正的产品质量预测方法. 制造技术与机床. 2025(02): 177-184 .
![]() | |
2. |
沈植诚,王宾,程军辉. 基于SMA-BP算法的焊件动态电阻预测. 中国新技术新产品. 2024(21): 18-20 .
![]() |