Citation: | YE Chao, HOU Liang, CHEN Yun, XU Yang, LIU Wenzhi, WANG Zhenzhong. Research on optimization of macroscopic and microscopic characteristics of 316L stainless steel by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 8-16. DOI: 10.12073/j.hjxb.20220426001 |
刘伟, 李能, 周标, 等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报, 2019, 55(20): 128 − 151.
Liu Wei, Li Neng, Zhou Biao, et al. Progress in additive manufacturing on complex structures and high-performance materials[J]. Journal of Mechanical Engineering, 2019, 55(20): 128 − 151.
|
刘立君, 刘大宇, 王晓陆, 等. H13钢激光熔覆陶瓷修复层的参数优化[J]. 焊接学报, 2020, 41(7): 65 − 70. doi: 10.12073/j.hjxb.20200508002
Liu Lijun, Liu Dayu, Wang Xiaolu, et al. Parameter optimization of laser cladding ceramic repair layer of H13 steel[J]. Transactions of the China Welding Institution, 2020, 41(7): 65 − 70. doi: 10.12073/j.hjxb.20200508002
|
Gao J, Wu C, Hao Y, et al. Numerical simulation and experimental investigation on three-dimensional modelling of single-track geometry and temperature evolution by laser cladding[J]. Optics & Laser Technology, 2020, 129: 106287 − 106298.
|
Gao S, Feng Y, Wang J, et al. Molten pool characteristics of a nickel-titanium shape memory alloy for directed energy deposition[J]. Optics & Laser Technology, 2021, 142: 107215 − 107228.
|
Huang Y, Khamesee M B, Toyserkani E. A comprehensive analytical model for laser powder-fed additive manufacturing[J]. Additive Manufacturing, 2016, 12(partA): 90 − 99.
|
Ertay D S, Vlasea M, Erkorkmaz K. Thermomechanical and geometry model for directed energy deposition with 2d/3d toolpaths[J]. Additive Manufacturing, 2020, 35: 1 − 42.
|
Ansari M, Shoja Razavi R, Barekat M. An empirical-statistical model for coaxial laser cladding of NiCrAlY powder on Inconel 738 superalloy[J]. Optics & Laser Technology, 2016, 86: 136 − 144.
|
Erfanmanesh M, Abdollah-Pour H, Mohammadian-Semnani H, et al. An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel[J]. Optics & Laser Technology, 2017, 97: 180 − 186.
|
Nabhani M, Razavi R S, Barekat M. An empirical-statistical model for laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate[J]. Optics & Laser Technology, 2018, 100: 265 − 271.
|
Wen P, Feng Z, Zheng S. Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel[J]. Optics & Laser Technology, 2015, 65: 180 − 188.
|
Sun Y, Hao M. Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd: YAG laser[J]. Optics and Lasers in Engineering, 2012, 50(7): 985 − 995. doi: 10.1016/j.optlaseng.2012.01.018
|
Alam M K, Urbanic R J, Nazemi N, et al. Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(1): 397 − 413.
|
Zhang Hui, Zou Yong, Zou Zengda, et al. Comparative study on continuous and pulsed wave fiber laser cladding in-situ titanium-vanadium carbides reinforced Fe-based composite layer[J]. Materials Letters, 2015, 139: 255 − 257. doi: 10.1016/j.matlet.2014.10.102
|
Li Ruidi, Yuan Tiechui, Qiua Zili, et al. Nanostructured Co-Cr-Fe alloy surface layer fabricated by combination of laser clad and friction stir processing[J]. Surface & Coatings Technology, 2014, 258: 412 − 425.
|
Xie S, Li R, Yuan T, et al. Laser cladding assisted by friction stir processing for preparation of deformed crack-free Ni-Cr-Fe coating with nanostructure[J]. Optics Laser Technology, 2018, 337: 426 − 433.
|
Montero-Sistiaga Maria L, Godino-Martinez Miguel, Boschmans Kurt, et al. Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting)[J]. Additive Manufacturing, 2018, 23: 402 − 410. doi: 10.1016/j.addma.2018.08.028
|
Zhang Z, Farahmand P, Kovacevic R. Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser[J]. Materials & Design, 2016, 109: 686 − 699.
|
Zhang D, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys[J]. Nature, 2019, 576(7785): 91 − 95. doi: 10.1038/s41586-019-1783-1
|
Alali M, Todd I, Wynne B P. Through-thickness microstructure and mechanical properties of electron beam welded 20 mm thick AISI 316L austenitic stainless steel[J]. Materials & Design, 2017, 130: 488 − 500.
|
Erinosho M F, Akinlabi E T. Central composite design on the volume of laser metal deposited Ti6Al4V and Cu[J]. Materiali in Tehnologije, 2017, 51(3): 419 − 426. doi: 10.17222/mit.2016.019
|
Ma Pengzhao, Wu Yu, Zhang Pengju, et al. Solidification prediction of laser cladding 316L by the finite element simulation[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1): 957 − 969.
|
Wang L, Xue J, Wang Q. Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel[J]. Materials Science & Engineering, 2019, 751(28): 183 − 190.
|
1. |
孙淼,马帅,张慧铭,张瑞. Ti_3SiC_2基复合材料高温氧化性能研究进展. 化工新型材料. 2022(S1): 161-167 .
![]() |