Citation: | XING Songling, LI Chong, ZHOU Haipeng, CHEN Gaoqiang, SHI Qingyu. Structure and properties of friction stir welding joint of aluminum profile[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 124-128. DOI: 10.12073/j.hjxb.20221226003 |
Welding joints with partial thickened structures are usually adopted in the design of aluminum alloy profiles to offset the thinning of the joint caused by the downward pressure of the shoulder in friction stir welding. However, after welding of such aluminum profiles, it will take a lot of hours to manually polish the thickened structures. In order to reduce the amount of grinding, a new type of aluminum profile without thickened structure is designed in this paper, ensuring non-thinning-welding by changing the structure of shoulder. In-depth research is carried out from the perspective of weld forming quality, mechanical properties and organizational structure, and key process parameters such as welding downforce are determined. Finally, combined with the characteristics of extrusion tolerance and assembly tolerance in industrial production, the influence of joint misalignment on welding quality is studied, and a reasonable joint tolerance range is determined.
[1] |
Chen S, Zhou Y, Xue J, et al. High rotation speed friction stir welding for 2014 aluminum alloy thin sheets[J]. Journal of Materials Engineering and Performance, 2017, 26(3): 1337 − 1345. doi: 10.1007/s11665-017-2524-y
|
[2] |
D’Urso G, Giardini C, Lorenzi S, et al. Fatigue crack growth in the welding nugget of FSW joints of a 6060 aluminum alloy[J]. Journal of Materials Processing Technology, 2014, 214(10): 2075 − 2084. doi: 10.1016/j.jmatprotec.2014.01.013
|
[3] |
Lu X, Luan Y, Meng X, et al. Temperature distribution and mechanical properties of FSW medium thickness aluminum alloy 2219[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(11): 7229 − 7241.
|
[4] |
Hattingh D G, Blignault C, Van Niekerk T I, et al. Characterization of the influences of FSW tool geometry on welding forces and weld tensile strength using an instrumented tool[J]. Journal of Materials Processing Technology, 2008, 203(1-3): 46 − 57. doi: 10.1016/j.jmatprotec.2007.10.028
|
[5] |
张颖川, 马国栋, 代鹏, 等. 6061-T6铝合金中空薄壁型材双轴肩搅拌摩擦焊工具设计与工艺分析[J]. 焊接学报, 2022, 43(6): 88 − 95. doi: 10.12073/j.hjxb.20210512001
Zhang Yingchuan, Ma Guodong, Dai Peng, et al. Tool design and process analysis of bobbing tool friction stir welding for thin-walled extrude profile of 6061-T6 aluminum alloy[J]. Transactions of the China Welding Institution, 2022, 43(6): 88 − 95. doi: 10.12073/j.hjxb.20210512001
|
[6] |
Hao Y, Liu W. Analysis on exceptional cryogenic mechanical properties of AA2219 alloy FSW joints in multi-scale[J]. Materials Science and Engineering:A, 2022, 850: 143489. doi: 10.1016/j.msea.2022.143489
|
[7] |
张禹, 罗震, 谈辉, 等. 基于堆焊-电解的复合3D加工技术[J]. 焊接学报, 2015, 36(8): 39 − 42.
Zhang Yu, Luo Zhen, Tan Hui, et al. Hybrid 3D processing technology based on build-up welding and electrolytic machining[J]. Transactions of the China Welding Institution, 2015, 36(8): 39 − 42.
|
[8] |
Das D, Bag S, Pal S. A finite element model for surface and volumetric defects in the FSW process using a coupled Eulerian–Lagrangian approach[J]. Science and Technology of Welding and Joining, 2021, 26(5): 412 − 419. doi: 10.1080/13621718.2021.1931760
|
[9] |
沈浩然, 杨天豪, 贾洪德, 等. 铝锂合金无减薄搅拌摩擦焊工艺研究[J]. 电焊机, 2018, 48(7): 41 − 45.
Shen Haoran, Yang Tianhao, Jia Hongde, et al. Process study of aluminum-lithium alloy friction stir welding without thinning[J]. Electric Welding Machine, 2018, 48(7): 41 − 45.
|
[10] |
柏久阳, 王计辉, 林三宝, 等. 铝合金电弧增材制造焊道宽度尺寸预测[J]. 焊接学报, 2015, 36(9): 87 − 90.
Bai Jiuyang, Wang Jihui, Lin Sanbao, et al. Width prediction of aluminium alloy weld additively manufactured by TIG arc[J]. Transactions of the China Welding Institution, 2015, 36(9): 87 − 90.
|
[11] |
柏久阳, 范成磊, 林三宝, 等. 基板散热作用对电弧堆焊成形中熔宽调控的影响[J]. 焊接学报, 2016, 37(3): 115 − 119.
Bai Jiuyang, Fan Chenglei, Lin Sanbao, et al. Effects of baseplate's heat sink on the control strategies of weld width during GTA-additive manufacturing[J]. Transactions of the China Welding Institution, 2016, 37(3): 115 − 119.
|
[12] |
DIN EN 573-3, Aluminium and aluminium alloys-Chemical composition and form of wrought products-Part 3: Chemical composition and form of products (includes Amendment A1: 2022)[S]. European standards, 2022.
|
[13] |
DIN EN 755-2, Aluminium and aluminium alloys-Extruded rod/bar, tube and profiles-Part 2: Mechanical properties[S]. European standards, 2016.
|
[14] |
GB/T 2651-2008, 焊接接头拉伸试验方法[S]. 全国焊接标准化技术委员会, 2008.
GB/T 2651-2008, Tensile test method on welded joints[S]. SAC/TC55, 2008.
|
[15] |
Karthikeyan S, Mohan K, Arivazhagan S. Multi objective optimization of FSW process parameters to enhance the tensile strength and hardness of AA7068 welded joints[J]. Surface Topography: Metrology and Properties, 2021, 9(4): 045010. doi: 10.1088/2051-672X/ac0e7d
|
[1] | YUAN Kuilin, DONG Kun, LI Linyue. Two-dimensional weight function of stress intensity factors for external circumferential surface cracks in cylinders[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 61-71. DOI: 10.12073/j.hjxb.20231208001 |
[2] | XUE Bin, ZHANG Tianhui, XU Renping, WANG Shiyue. Effect of residual compressive stress field on fatigue crack growth of B780CF steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 103-108. |
[3] | WANG Xuedong, HE Enguang, QIAN Hongli. Computational method for deformation of T joint welded by double beam laser[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 93-96. |
[4] | LIU Gang, HUANG Ruxu, HUANG Yi. Equivalent hot spot stress approach for multiaxial fatigue strength assessment of complex welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 10-14. |
[5] | LI Chaowen, WANG Yong, HAN Tao. Effect of welding sequences on welding residual stress and distortion of T-joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 37-40. |
[6] | XU Lianyong, JING Hongyang. Stress intensity factor of interfacial crack between metal-base ceramic coating and steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 84-88. |
[7] | XUE Songbai, WU Yuxiu, HAN Zongjie, HUANG Xiang. Simulation on equivalent stress in soldered joints of QFP devices with different leads[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 17-20. |
[8] | ZHANG li-guo, JI Shu-de, FANG Hong-yuan, LIU Xue-song. Influence of welding sequence of subsection welding on residual stress of T joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 109-112. |
[9] | ZHANG Zhong-ping, HUO Li-xing, WANG Dong-po, ZHANG Yu-feng. Effect of sprayed coatings on stress intensity factor of weld toe crack of cruciform welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 85-88. |
[10] | Qiu Hai, Li Guangduo. Influence of stress ratio R on threshold value △Kth of fatigue crack propagation for welded joints of 09CuPCrNi steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (1): 24-29. |
1. |
陈俊刚. 低合金高强度结构钢焊接结晶裂纹预防措施探析. 中国机械. 2024(08): 57-60 .
![]() | |
2. |
王诗洋,刘士伟,侯星宇,孙元,曹楠,石万鹏. 焊丝成分对镍基高温合金TIG焊焊接性的影响. 焊接学报. 2023(03): 31-36+60+130-131 .
![]() | |
3. |
魏超,郭枭,韩维超,姜英龙,吕晓春,徐理想. 基于原位拉伸的ERNiCrFe-13焊丝熔敷金属断裂机制分析. 焊接学报. 2023(09): 74-80+133 .
![]() | |
4. |
郭枭,谷宇,韩莹,徐锴,王岩,姜英龙. Inconel 625合金堆焊金属开裂机理研究. 焊接学报. 2023(11): 117-123+135-136 .
![]() |