Citation: | ZHOU Yaju, YIN Shengming, XIA Yongzhong, YI Guoqiang, XUE Lihong, YAN Youwei. Effect of heat treatment on the microstructure and mechanical properties of wire arc additively manufactured ferrite/martensitic steel for nuclear applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 18-26. DOI: 10.12073/j.hjxb.20221011001 |
Shang Z, Ding Jie, Fan C, et al. Tailoring the strength and ductility of T91 steel by partial tempering treatment[J]. Acta Materialia, 2019, 169: 209 − 224. doi: 10.1016/j.actamat.2019.02.043
|
Hishinuma A, Kohyama A, Klueh R L, et al. Current status and future R&D for reduced-activation ferritic/martensitic steels[J]. Journal of Nuclear Materials, 1998, 258: 193 − 204.
|
Kano S, Yang H, Suzue R, et al. Precipitation of carbides in F82H steels and its impact on mechanical strength[J]. Nuclear Materials and Energy, 2016, 9: 331 − 337. doi: 10.1016/j.nme.2016.09.017
|
Chen J, Liu C, Liu Y, et al. Effects of tantalum content on the microstructure and mechanical properties of low-carbon RAFM steel[J]. Journal of Nuclear Materials, 2016, 479: 295 − 301. doi: 10.1016/j.jnucmat.2016.07.029
|
Hu X, Huang L, Yan W, et al. Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging[J]. Materials Science & Engineering: A, 2013, 586: 253 − 258.
|
Sahoo K C, Vanaja J, Parameswaran P, et al. Effect of thermal ageing on microstructure, tensile and impact properties of reduced activated ferritic-martensitic steel[J]. Materials Science & Engineering: A, 2017, 686: 54 − 64.
|
易果强, 周亚举, 张鹏, 等. 电弧熔丝增材制造ODS钢的成型工艺及组织性能[J]. 材料热处理学报, 2022, 43(6): 128 − 136.
Yi Guoqiang, Zhou Yaju, Zhang Peng, et al. Forming process, microstructure and properties of ODS steel prepared by wire arc additive manufacturing[J]. Journal of Materials Heat Treatment, 2022, 43(6): 128 − 136.
|
陈树君, 张所来, 黄宁, 等. 电弧熔丝脉冲GTAW熔滴过渡行为分析[J]. 焊接学报, 2017, 38(1): 17 − 21.
Chen Shujun, Zhang Suolai, Huang Ning, et al. Analysis of droplet transfer behavior of wire and arc pulse GTAW[J]. Transactions of the China Welding Institution, 2017, 38(1): 17 − 21.
|
苗玉刚, 王清龙, 李春旺, 等. 中厚板钛合金激光-CMT复合焊接工艺特性分析[J]. 焊接学报, 2022, 43(8): 42 − 47.
Miao Yugang, Wang Qinglong, Li Chunwang, et al. Characterization of laser arc hybrid welding process for medium-thick titanium alloy plate[J]. Transactions of the China Welding Institution, 2022, 43(8): 42 − 47.
|
郝婷婷, 李承德, 王旭, 等. 钇含量对电弧增材制造2319铝合金组织与性能的影响[J]. 焊接学报, 2022, 43(7): 49 − 56.
Hao Tingting, Li Chengde, Wang Xu, et al. Effect of yttrium content on microstructure and properties of 2319 aluminum alloy fabricated by wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2022, 43(7): 49 − 56.
|
Jia Jinlong, Zhao Yue, Dong Minghua, et al. Numerical simulation on residual stress and deformation for WAAM parts of aluminum alloy based on temperature function method[J]. China Welding, 2020, 29(2): 1 − 8.
|
Dharmendra C, Hadadzadeh A, Amirkhiz B S, et al. Microstructural evolution and mechanical behavior of nickel aluminum bronze Cu-9Al-4Fe-4Ni-1Mn fabricated through wire-arc additive manufacturing[J]. Additive Manufacturing, 2019, 30: 100872. doi: 10.1016/j.addma.2019.100872
|
Belotti L P, Dommelen J A W, Geers M G D, et al. Microstructural characterisation of thick-walled wire arc additively manufactured stainless steel[J]. Journal of Materials Processing Technology, 2022, 299: 117373. doi: 10.1016/j.jmatprotec.2021.117373
|
左秀荣, 陈蕴博, 王淼辉, 等. 铁素体/马氏体双相钢的组织及性能[J]. 材料热处理学报, 2010, 31(1): 29 − 34.
Zuo Xiurong, Chen Yunbo, Wang Miaohui, et al. Microstructure and mechanical properties of ferrite/martensite dual-phase steel[J]. Journal of Materials Heat Treatment, 2010, 31(1): 29 − 34.
|
Zhou Y J, Yin S M, Jiang Y, et al. Wire and arc additive manufacturing fabrication of ODS-RAMF steels and preliminary evaluation on microstructures and mechanical properties[J]. Journal of Nuclear Materials, 2022, 340: 154068.
|
He H, Huang S, Wang H, et al. Isothermal holding processes of a reduced activation ferritic/martensitic steel to form a bainitic/martensitic multiphase microstructure and its mechanical properties[J]. Materials Science & Engineering: A, 2021, 822: 141645.
|
Tanvir A, Ahsan M, Seo G, et al. Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures[J]. Journal of Materials Science & Technology, 2021, 67(8): 80 − 94. doi: 10.1016/j.jmst.2020.04.085
|
Morito S, Edamatsu Y, Ichinotani K, et al. Quantitative analysis of three-dimensional morphology of martensite packets and blocks in iron-carbon-manganese steels[J]. Journal of Alloys Compounds, 2013, 577: S587 − S592. doi: 10.1016/j.jallcom.2012.02.004
|
Dou P, Jiang S M, Qiu L L, et al. Effects of contents of Al, Zr and Ti on oxide particles in Fe-15Cr-2W-0.35Y2O3 ODS steels[J]. Journal of Nuclear Materials, 2020, 531: 152025. doi: 10.1016/j.jnucmat.2020.152025
|
Arkhurst B M, Bae J H, Na M Y, et al. Effect of tellurium on the microstructure and mechanical properties of Fe-14Cr oxide-dispersion-strengthened steels produced by additive manufacturing[J]. Journal of Materials Science and Technology, 2021, 95: 114 − 126. doi: 10.1016/j.jmst.2021.03.068
|
Zhang Y, Liu D W, Wang Y, et al. A 9%Cr ODS steel composite material reinforced by Ti layers[J]. Materials Science & Engineering: A, 2016, 676: 253 − 262.
|
Zhou Y J, Yin S M, Chen Z L, et al. Wire and arc additive manufacturing of inner-channel structured RAFM: Effect of microalloying Ti on microstructure and mechanical properties[J]. Fusion Engineering and Design, 2022, 184: 113296. doi: 10.1016/j.fusengdes.2022.113296
|
Liu X Y, Sui Y, Li J B, et al. Laser metal deposited steel alloys with uniform microstructures and improved properties prepared by addition of small amounts of dispersed Y2O3 nanoparticles[J]. Materials Science & Engineering: A, 2021, 806: 140827.
|
[1] | YAN Chunyan, GU Zhengjia, NIE Rongqi, ZHANG Kezhao, WU Chen, WANG Baosen. Residual stress analysis in multi-pass underwater wet welded X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 15-21. DOI: 10.12073/j.hjxb.20230321001 |
[2] | YAN Chunyan, ZHANG Hao, ZHU Zijiang, ZHANG Kezhao, GU Zhengjia, WANG Baosen. Analysis of welding residual stress in multi-pass hybrid laser-MIG welded X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 28-34, 41. DOI: 10.12073/j.hjxb.20210312001 |
[3] | XU Jie, LI Pengpeng, FAN Yu, SUN Zhi. Effect of temperature on fracture toughness in weld thermal simulated X80 pipeline steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 22-26. |
[4] | WANG Bingying, ZHAN Fafu, LI Huiling, GAO Zhiwei. Effect of ultrasonic rolling processing of X80 pipeline steel on welding residual stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 87-90. |
[5] | YAN Chunyan, ZHANG Genyuan, LIU Cuiying. Numerical simulation of hydrogen distribution in welded joint of X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 103-107. |
[6] | WANG Bingying, MIAO Yan, ZHOU Shengnan, HOU ZhenBo. Effect of surface nanocrystallization on stress corrosion cracking behaviors of X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (8): 81-84. |
[7] | LI Yajuan, LI Wushen. Numerical simulation on welding residual stresses of X80 pipeline girth weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (6): 97-100,104. |
[8] | LI Ran, WEI Jinshan, PENG Yun, TIAN Zhiling, SHI Zhe. Development of gas metal arc welding wire for X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 97-100. |
[9] | WANG Bingying, HUO Lixing, ZHANG Yufeng, WANG Dongpo. CO32--HCO3- stress corrosion test of welded joint for X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 85-88. |
[10] | WANG Bing-ying, HUO Li-xing, ZHANG Yu-feng, WANG Dong-po. SSCC of welded joint for X80 pipeline steel and numerical simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 73-76. |
1. |
董博文,史光远,钟素娟,董显,程亚芳,龙伟民,张冠星. 钎料短流程成型技术研究现状(英文). 稀有金属材料与工程. 2025(02): 377-384 .
![]() | |
2. |
夏月庆,杜强,郭鹏,秦建,路全彬,丁宗业,李鹏,董红刚,纠永涛,周培林,张秀丽. 钛/钢异质金属压力焊与钎焊研究进展. 精密成形工程. 2025(03): 67-80 .
![]() | |
3. |
梁伊茗,赵明远,盛兰兵,沈元勋,钟素娟. 钛合金钎焊界面与熔蚀调控研究现状. 焊接. 2025(04): 66-77 .
![]() | |
4. |
李鹏,王景宽,秦志伟,丁志杰,马雄,姚佳,孙华为,程亚芳,常云峰,董红刚. TiZrNiCoNbSn高熵钎料钎焊Ti_2AlNb合金接头微观组织与性能. 精密成形工程. 2025(04): 217-225 .
![]() | |
5. |
田晓羽,张志伟,周晨,赵连清,田洋光,付伟,宋晓国. 钎焊温度对BNi-2非晶钎料钎焊1Cr18Ni9Ti不锈钢组织和性能的影响. 焊接学报. 2024(06): 61-67 .
![]() | |
6. |
李鹏,张振阳,张亮亮,马雄,孙兵兵,李超,董红刚. (TiZrHf)_(40)(NiCu)_(55)Al_5高熵非晶钎料真空钎焊Ti_2AlNb/GH4169合金. 焊接学报. 2024(08): 1-11 .
![]() |