Advanced Search
ZHOU Yaju, YIN Shengming, XIA Yongzhong, YI Guoqiang, XUE Lihong, YAN Youwei. Effect of heat treatment on the microstructure and mechanical properties of wire arc additively manufactured ferrite/martensitic steel for nuclear applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 18-26. DOI: 10.12073/j.hjxb.20221011001
Citation: ZHOU Yaju, YIN Shengming, XIA Yongzhong, YI Guoqiang, XUE Lihong, YAN Youwei. Effect of heat treatment on the microstructure and mechanical properties of wire arc additively manufactured ferrite/martensitic steel for nuclear applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 18-26. DOI: 10.12073/j.hjxb.20221011001

Effect of heat treatment on the microstructure and mechanical properties of wire arc additively manufactured ferrite/martensitic steel for nuclear applications

More Information
  • Received Date: October 10, 2022
  • Available Online: September 11, 2023
  • Reduced activation ferritic/martensitic (RAFM) steel was fabricated by wire and arc additive manufacturing (WAAM) technology. The microstructural evolution was observed by optical microscope, scanning electron microscope and transmission electron microscope and the mechanical properties were tested by a tensile tester to study the effect of heat treatment on the microstructure and mechanical properties of WAAM RAFM steel. The results showed that the microstructure of as-built RAFM steel consisted of dual phases of ferrite and tempered martensite and the average grain size was about 1.51 μm. After heat treatment, the RAFM steel showed no significant increase in grain size (1.84 μm), and high-density dislocations were retained in the microstructure. In addition, a large number of TiO2 secondary phase nanoparticles, with the grain size of 5 − 10 nm, have precipitated and dispersed in the matrix after the heat treatment. The tensile strength of WAAM RAFM steel was significantly improved after heat treatment while the elongation after fracture was slightly reduced. The tensile strength of RAFM steel after heat treatment was 1080 MPa at room temperature and even at a temperature of 650 ℃, it can still reach about 285 MPa.
  • Shang Z, Ding Jie, Fan C, et al. Tailoring the strength and ductility of T91 steel by partial tempering treatment[J]. Acta Materialia, 2019, 169: 209 − 224. doi: 10.1016/j.actamat.2019.02.043
    Hishinuma A, Kohyama A, Klueh R L, et al. Current status and future R&D for reduced-activation ferritic/martensitic steels[J]. Journal of Nuclear Materials, 1998, 258: 193 − 204.
    Kano S, Yang H, Suzue R, et al. Precipitation of carbides in F82H steels and its impact on mechanical strength[J]. Nuclear Materials and Energy, 2016, 9: 331 − 337. doi: 10.1016/j.nme.2016.09.017
    Chen J, Liu C, Liu Y, et al. Effects of tantalum content on the microstructure and mechanical properties of low-carbon RAFM steel[J]. Journal of Nuclear Materials, 2016, 479: 295 − 301. doi: 10.1016/j.jnucmat.2016.07.029
    Hu X, Huang L, Yan W, et al. Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging[J]. Materials Science & Engineering: A, 2013, 586: 253 − 258.
    Sahoo K C, Vanaja J, Parameswaran P, et al. Effect of thermal ageing on microstructure, tensile and impact properties of reduced activated ferritic-martensitic steel[J]. Materials Science & Engineering: A, 2017, 686: 54 − 64.
    易果强, 周亚举, 张鹏, 等. 电弧熔丝增材制造ODS钢的成型工艺及组织性能[J]. 材料热处理学报, 2022, 43(6): 128 − 136.

    Yi Guoqiang, Zhou Yaju, Zhang Peng, et al. Forming process, microstructure and properties of ODS steel prepared by wire arc additive manufacturing[J]. Journal of Materials Heat Treatment, 2022, 43(6): 128 − 136.
    陈树君, 张所来, 黄宁, 等. 电弧熔丝脉冲GTAW熔滴过渡行为分析[J]. 焊接学报, 2017, 38(1): 17 − 21.

    Chen Shujun, Zhang Suolai, Huang Ning, et al. Analysis of droplet transfer behavior of wire and arc pulse GTAW[J]. Transactions of the China Welding Institution, 2017, 38(1): 17 − 21.
    苗玉刚, 王清龙, 李春旺, 等. 中厚板钛合金激光-CMT复合焊接工艺特性分析[J]. 焊接学报, 2022, 43(8): 42 − 47.

    Miao Yugang, Wang Qinglong, Li Chunwang, et al. Characterization of laser arc hybrid welding process for medium-thick titanium alloy plate[J]. Transactions of the China Welding Institution, 2022, 43(8): 42 − 47.
    郝婷婷, 李承德, 王旭, 等. 钇含量对电弧增材制造2319铝合金组织与性能的影响[J]. 焊接学报, 2022, 43(7): 49 − 56.

    Hao Tingting, Li Chengde, Wang Xu, et al. Effect of yttrium content on microstructure and properties of 2319 aluminum alloy fabricated by wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2022, 43(7): 49 − 56.
    Jia Jinlong, Zhao Yue, Dong Minghua, et al. Numerical simulation on residual stress and deformation for WAAM parts of aluminum alloy based on temperature function method[J]. China Welding, 2020, 29(2): 1 − 8.
    Dharmendra C, Hadadzadeh A, Amirkhiz B S, et al. Microstructural evolution and mechanical behavior of nickel aluminum bronze Cu-9Al-4Fe-4Ni-1Mn fabricated through wire-arc additive manufacturing[J]. Additive Manufacturing, 2019, 30: 100872. doi: 10.1016/j.addma.2019.100872
    Belotti L P, Dommelen J A W, Geers M G D, et al. Microstructural characterisation of thick-walled wire arc additively manufactured stainless steel[J]. Journal of Materials Processing Technology, 2022, 299: 117373. doi: 10.1016/j.jmatprotec.2021.117373
    左秀荣, 陈蕴博, 王淼辉, 等. 铁素体/马氏体双相钢的组织及性能[J]. 材料热处理学报, 2010, 31(1): 29 − 34.

    Zuo Xiurong, Chen Yunbo, Wang Miaohui, et al. Microstructure and mechanical properties of ferrite/martensite dual-phase steel[J]. Journal of Materials Heat Treatment, 2010, 31(1): 29 − 34.
    Zhou Y J, Yin S M, Jiang Y, et al. Wire and arc additive manufacturing fabrication of ODS-RAMF steels and preliminary evaluation on microstructures and mechanical properties[J]. Journal of Nuclear Materials, 2022, 340: 154068.
    He H, Huang S, Wang H, et al. Isothermal holding processes of a reduced activation ferritic/martensitic steel to form a bainitic/martensitic multiphase microstructure and its mechanical properties[J]. Materials Science & Engineering: A, 2021, 822: 141645.
    Tanvir A, Ahsan M, Seo G, et al. Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures[J]. Journal of Materials Science & Technology, 2021, 67(8): 80 − 94. doi: 10.1016/j.jmst.2020.04.085
    Morito S, Edamatsu Y, Ichinotani K, et al. Quantitative analysis of three-dimensional morphology of martensite packets and blocks in iron-carbon-manganese steels[J]. Journal of Alloys Compounds, 2013, 577: S587 − S592. doi: 10.1016/j.jallcom.2012.02.004
    Dou P, Jiang S M, Qiu L L, et al. Effects of contents of Al, Zr and Ti on oxide particles in Fe-15Cr-2W-0.35Y2O3 ODS steels[J]. Journal of Nuclear Materials, 2020, 531: 152025. doi: 10.1016/j.jnucmat.2020.152025
    Arkhurst B M, Bae J H, Na M Y, et al. Effect of tellurium on the microstructure and mechanical properties of Fe-14Cr oxide-dispersion-strengthened steels produced by additive manufacturing[J]. Journal of Materials Science and Technology, 2021, 95: 114 − 126. doi: 10.1016/j.jmst.2021.03.068
    Zhang Y, Liu D W, Wang Y, et al. A 9%Cr ODS steel composite material reinforced by Ti layers[J]. Materials Science & Engineering: A, 2016, 676: 253 − 262.
    Zhou Y J, Yin S M, Chen Z L, et al. Wire and arc additive manufacturing of inner-channel structured RAFM: Effect of microalloying Ti on microstructure and mechanical properties[J]. Fusion Engineering and Design, 2022, 184: 113296. doi: 10.1016/j.fusengdes.2022.113296
    Liu X Y, Sui Y, Li J B, et al. Laser metal deposited steel alloys with uniform microstructures and improved properties prepared by addition of small amounts of dispersed Y2O3 nanoparticles[J]. Materials Science & Engineering: A, 2021, 806: 140827.
  • Related Articles

    [1]YAN Chunyan, GU Zhengjia, NIE Rongqi, ZHANG Kezhao, WU Chen, WANG Baosen. Residual stress analysis in multi-pass underwater wet welded X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 15-21. DOI: 10.12073/j.hjxb.20230321001
    [2]YAN Chunyan, ZHANG Hao, ZHU Zijiang, ZHANG Kezhao, GU Zhengjia, WANG Baosen. Analysis of welding residual stress in multi-pass hybrid laser-MIG welded X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 28-34, 41. DOI: 10.12073/j.hjxb.20210312001
    [3]XU Jie, LI Pengpeng, FAN Yu, SUN Zhi. Effect of temperature on fracture toughness in weld thermal simulated X80 pipeline steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 22-26.
    [4]WANG Bingying, ZHAN Fafu, LI Huiling, GAO Zhiwei. Effect of ultrasonic rolling processing of X80 pipeline steel on welding residual stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 87-90.
    [5]YAN Chunyan, ZHANG Genyuan, LIU Cuiying. Numerical simulation of hydrogen distribution in welded joint of X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 103-107.
    [6]WANG Bingying, MIAO Yan, ZHOU Shengnan, HOU ZhenBo. Effect of surface nanocrystallization on stress corrosion cracking behaviors of X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (8): 81-84.
    [7]LI Yajuan, LI Wushen. Numerical simulation on welding residual stresses of X80 pipeline girth weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (6): 97-100,104.
    [8]LI Ran, WEI Jinshan, PENG Yun, TIAN Zhiling, SHI Zhe. Development of gas metal arc welding wire for X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 97-100.
    [9]WANG Bingying, HUO Lixing, ZHANG Yufeng, WANG Dongpo. CO32--HCO3- stress corrosion test of welded joint for X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 85-88.
    [10]WANG Bing-ying, HUO Li-xing, ZHANG Yu-feng, WANG Dong-po. SSCC of welded joint for X80 pipeline steel and numerical simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 73-76.
  • Cited by

    Periodical cited type(6)

    1. 董博文,史光远,钟素娟,董显,程亚芳,龙伟民,张冠星. 钎料短流程成型技术研究现状(英文). 稀有金属材料与工程. 2025(02): 377-384 .
    2. 夏月庆,杜强,郭鹏,秦建,路全彬,丁宗业,李鹏,董红刚,纠永涛,周培林,张秀丽. 钛/钢异质金属压力焊与钎焊研究进展. 精密成形工程. 2025(03): 67-80 .
    3. 梁伊茗,赵明远,盛兰兵,沈元勋,钟素娟. 钛合金钎焊界面与熔蚀调控研究现状. 焊接. 2025(04): 66-77 .
    4. 李鹏,王景宽,秦志伟,丁志杰,马雄,姚佳,孙华为,程亚芳,常云峰,董红刚. TiZrNiCoNbSn高熵钎料钎焊Ti_2AlNb合金接头微观组织与性能. 精密成形工程. 2025(04): 217-225 .
    5. 田晓羽,张志伟,周晨,赵连清,田洋光,付伟,宋晓国. 钎焊温度对BNi-2非晶钎料钎焊1Cr18Ni9Ti不锈钢组织和性能的影响. 焊接学报. 2024(06): 61-67 . 本站查看
    6. 李鹏,张振阳,张亮亮,马雄,孙兵兵,李超,董红刚. (TiZrHf)_(40)(NiCu)_(55)Al_5高熵非晶钎料真空钎焊Ti_2AlNb/GH4169合金. 焊接学报. 2024(08): 1-11 . 本站查看

    Other cited types(0)

Catalog

    Article views (271) PDF downloads (79) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return