Advanced Search
JIN Junlong, LI Ju, ZHANG Chuanchen, CHANG Chuanchuan. Effect of heat treatment on microstructure and properties of linear friction welded joint of TC21 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 69-74. DOI: 10.12073/j.hjxb.20211009001
Citation: JIN Junlong, LI Ju, ZHANG Chuanchen, CHANG Chuanchuan. Effect of heat treatment on microstructure and properties of linear friction welded joint of TC21 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 69-74. DOI: 10.12073/j.hjxb.20211009001

Effect of heat treatment on microstructure and properties of linear friction welded joint of TC21 titanium alloy

More Information
  • Received Date: October 08, 2021
  • Available Online: August 28, 2022
  • Based on the development requirements of advanced aircraft components, for TC21 titanium alloy linear friction welded joint, three heat treatment systems were designed, and the microstructure and mechanical properties of the joint were analyzed under the welding condition and different heat treatment conditions. The results show: the weld zone of the as welded sample is composed of fine β grains, and acicular martensite with a large number of dislocations precipitated in the crystal,which plays a role of dislocation strengthening, the microhardness is significantly higher than that of the base metal. The secondary α phase dissolved in the thermal mechanical affected zone which near the base material, resulted in decrease in microhardness. The α phase in the joints changes significantly after heat treatment. A long holding time of annealing in high temperature zone leads to the growth of primary strip α phase, and annealing in low temperature zone promotes the precipitation of secondary needle α phase. All tensile specimens after heat treatment are broken in the base material area, the microstructure of weld zone and thermo-mechanically affected zone of the joint after double annealing is β transformed tissue + primary strip α phase + secondary acicular α phase, the microhardness of each region is basically the same as that of the base metal, and the microstructure is more uniform.
  • 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690 − 2698.

    Wang Huaming. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690 − 2698.
    付鹏飞. 大厚度钛合金电子束焊接接头力学行为及调控方法[D]. 武汉: 华中科技大学, 2016.

    Fu Pengfei. Mechanical behaviors and regulation methods of heavy thickness titanium alloy joints with electron beam welding[D]. Wuhan: Huazhong University of Science and Technology, 2016.
    赵永庆, 曲恒磊, 冯亮. 高强高韧损伤容限型钛合金TC21研制[J]. 钛工业进展, 2004(2): 22 − 24.

    Zhao Yongqing, Qu Henglei, Feng Liang. Research on high strength high toughness and high damage-tolerant titanium alloy TC21[J]. Titanium Industry Progress, 2004(2): 22 − 24.
    费玉环, 周廉, 曲恒磊, 等. 两相区热处理对TC21 钛合金显微结构的影响[J]. 稀有金属材料与工程, 2007, 36(11): 1928 − 1932. doi: 10.3321/j.issn:1002-185x.2007.11.011

    Fei Yuhuan, Zhou Lian, Qu Henglei, et al. Effects of heat-treatments on microstructures of TC21 titanium alloy[J]. Rare Metal Materials and Engineering, 2007, 36(11): 1928 − 1932. doi: 10.3321/j.issn:1002-185x.2007.11.011
    张传臣, 张田仓, 金俊龙. TC21 + TC4-DT线性摩擦焊接头组织与力学性能试验[J]. 焊接学报, 2019, 40(12): 133 − 137.

    Zhang Chuanchen, Zhang Tiancang, Jin Junlong. Microstructure and mechanical properties of linear friction welding joint of TC21/TC4-DT[J]. Transactions of the China Welding Institution, 2019, 40(12): 133 − 137.
    马少俊, 吴学仁, 刘建中, 等. TC21 钛合金的微观组织对力学性能的影响[J]. 航空材料学报, 2006, 26(5): 22 − 25. doi: 10.3969/j.issn.1005-5053.2006.05.006

    Ma Shaojun, Wu Xueren, Liu Jianzhong, et al. Influence of microstructures on mechanical properties for TC21 titanium alloy[J]. Journal of Aeronautical Materials, 2006, 26(5): 22 − 25. doi: 10.3969/j.issn.1005-5053.2006.05.006
    张秉刚, 王廷, 陈国庆, 等. TC21钛合金电子束焊缝精细组织及其对硬度的影响[J]. 中国有色金属学报, 2010, 20(1): 829 − 832.

    Zhang Binggang, Wang Ting, Chen Guoqing, et al. Fine microstructure and its effect on hardness of electron beam welding joint of TC21 Ti alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(1): 829 − 832.
    周水亮, 陶军, 郭德伦. TC21细晶钛合金TIG焊接接头组织及力学性能研究[J]. 航空材料学报, 2009, 29(6): 53 − 58. doi: 10.3969/j.issn.1005-5053.2009.6.011

    Zhou Shuiliang, Tao Jun, Guo Delun. Study on microstructure and mechanical properties of fine grain TC21 alloy in TIG[J]. Journal of Aeronautical Materials, 2009, 29(6): 53 − 58. doi: 10.3969/j.issn.1005-5053.2009.6.011
    吴红兵. 航空框类整体结构件铣削加工变形的数值模拟与实验研究[D]. 杭州: 浙江大学, 2008.

    Wu Hongbing. Study on numerical simulation and experiment of milling process for aerospace monolithic components[D]. Hangzhou: Zhejiang University, 2008.
    Ernesto Benini. Advances in gas turbine technology[M]. London: Intech Open, 2011, 411 − 435.
    Deans W F. Application of fracture mechanics for selection of metallic structural materials[J]. Journal of Mechanical Working Technology, 1984, 10(3): 375.
    周军, 梁武, 张春波, 等. TC17 钛合金线性摩擦焊接头组织及力学性能分析[J]. 焊接学报, 2020, 41(5): 36 − 41. doi: 10.12073/j.hjxb.20200408002

    Zhou Jun, Liang Wu, Zhang Chunbo, et al. Microstructure and mechanical properties of linear friction welding joint of TC17 titanium alloy[J]. Transactions of the China Welding Institution, 2020, 41(5): 36 − 41. doi: 10.12073/j.hjxb.20200408002
  • Cited by

    Periodical cited type(2)

    1. 卞宏友,刘明松,刘伟军,刘晏硕,于兴福. 退火处理对电子束焊接TC17钛合金组织与力学性能的影响. 金属热处理. 2025(02): 194-199 .
    2. 刘全明,肖俊峰,高斯峰,唐文书,高松,龙伟民. 置氢TA10合金焊接接头组织和高温压缩性能. 焊接学报. 2024(08): 79-84+94 . 本站查看

    Other cited types(2)

Catalog

    Article views (262) PDF downloads (38) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return