Advanced Search
YANG Yicheng, DU Bing, HUANG Jihua, XU Kai, CHEN Jian, HUANG Ruisheng. Spatial thermal field distribution characteristics of hollow tungsten arc welding with coaxial filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(3): 63-67. DOI: 10.12073/j.hjxb.20210908001
Citation: YANG Yicheng, DU Bing, HUANG Jihua, XU Kai, CHEN Jian, HUANG Ruisheng. Spatial thermal field distribution characteristics of hollow tungsten arc welding with coaxial filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(3): 63-67. DOI: 10.12073/j.hjxb.20210908001

Spatial thermal field distribution characteristics of hollow tungsten arc welding with coaxial filler wire

More Information
  • Received Date: September 07, 2021
  • Available Online: April 06, 2022
  • The source of welding wire melting heat in the process of hollow tungsten arc welding with coaxial wire feeding is systematically studied by using the method of theoretical modeling and experiment. The results show that the analysis results of the theoretical model based on magnetohydrodynamics are highly consistent with the actual situation. Under the combined action of high temperature arc heat radiation and cathode heat conduction, the gradient temperature zone formed in the inner hole of cathode will preheat the welding wire to a certain extent. The temperature near the geometric center on the central axis of annular hollow tungsten arc is the highest, and the temperature is up to 13 700 K, when the welding current is 400 A. The potential is equal after the droplet contacts with the liquid molten pool. Under the action of the principle of minimum voltage, the anode action area of some high-temperature arc will change from the liquid molten pool to the surface of the welding wire. At the same time, some welding current will flow through the welding wire, and the resistance heat formed is one of the main reasons for the high-efficiency fuse. The results of droplet transfer characteristics analysis show that hollow tungsten arc welding with coaxial filler wire has high process stability and is a new welding method with great development prospect.
  • 徐良, 欧阳凯, 海锋. K-TIG焊接动态过程及组织和性能分析[J]. 焊接学报, 2020, 41(8): 73 − 77. doi: 10.12073/j.hjxb.20200706005

    Xu Liang, Ou Yangkai, Yang Haifeng, et al. Study on K-TIG welding process and properties of Q235 steel[J]. Transactions of the China Welding Institution, 2020, 41(8): 73 − 77. doi: 10.12073/j.hjxb.20200706005
    Spaniol E, Ungethüm T, Trautmann M, et al. Development of a novel TIG hot-wire process for wire and arc additive manufacturing[J]. Welding in the World, 2020, 64: 1329 − 1340. doi: 10.1007/s40194-020-00871-w
    Ungethüm T, Spaniol E, Hertel M, et al. Analysis of metal transfer and weld geometry in hot-wire GTAW with indirect resistive heating[J]. Welding in the World, 2020, 64: 2109 − 2117. doi: 10.1007/s40194-020-00986-0
    杨义成, 陈健, 黄瑞生, 等. 空心钨极焊接关键技术问题及发展现状[J]. 焊接, 2021(5): 1 − 8.

    Yang Yicheng, Chen Jian, Huang Ruisheng, et al. Key technicalproblem and devclopmcnt status of hollowtungstcn arcwelding[J]. Welding & Joining, 2021(5): 1 − 8.
    Tashiro S, Tanaka M, Nakatani M, et al. Numerical analysis of energy source properties of hollow cathode arc[J]. Surface and Coatings Technology, 2007, 201(9-11): 5431 − 5434. doi: 10.1016/j.surfcoat.2006.07.158
    Nerovnyi V M, Khakhalev A D. Hollow cathode arc discharge as an effective energy source for welding processes in vacuum[J]. Journal of Physics D:Applied Physics, 2008, 41(3): 035201. doi: 10.1088/0022-3727/41/3/035201
    Chen S, Yan Z, Jiang F, et al. The pressure distribution of hollow cathode centered negative pressure arc[J]. Journal of Manufacturing Processes, 2016, 23: 21 − 28. doi: 10.1016/j.jmapro.2016.05.016
    徐国建, 刘占起, 杭争翔, 等. 半裂式空心钨极同轴送丝惰性气体保护焊焊枪: CN207289135U [P]. 2018-05-01.

    Xu Guojian, Liu Zhanqi, Hang Zhengxiang, et al. Semi split hollow tungsten electrode welding gun with coaxial feeding wire in inert gas shielding: CN207289135U [P]. 2018-05-01.
    苗玉刚, 马照伟, 赵慧慧, 等. 一种基于空心钨极分流的熔化极电弧焊接装置及方法: CN109079291A [P]. 2018-12-25.

    Miao Yugang, Ma Zhaowei, Zhao Huihui, et al. A shielding gas arc welding device and method based on hollow tungsten electrode shunt: CN109079291A [P]. 2018-12-25.
    胡庆贤, 唐峰, 王晓丽, 等. 一种空心钨极高深熔TIG填丝焊接厚板的焊接方法: CN109332858A [P]. 2019-02-15.

    Hu Qingxian,Tang Feng, Wang Xiaoli, et al. A thick plate weld-ing method using hollow tungsten electrode high penetration with filling wire: CN109332858A [P]. 2019-02-15.
    雷正, 朱宗涛, 李远星, 等. 空心钨极TIG焊电弧特性数值模拟[J]. 焊接学报, 2021, 42(9): 9 − 14. doi: 10.12073/j.hjxb.20210131003

    Lei Zheng, Zhu Zongtao, Li Yuanxing, et al. Numerical simulation of TIG arc characteristics of hollow tungsten electrode[J]. Transactions of the China Welding Institution, 2021, 42(9): 9 − 14. doi: 10.12073/j.hjxb.20210131003
  • Related Articles

    [1]HAN Jiao, HAN Yongquan, HONG Haitao, SUN Zhenbang. Analysis of VPPA-MIG Hybrid Arc Coupling Mechanism Based on Spectral Diagnosis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 104-109. DOI: 10.12073/j.hjxb.20221211001
    [2]LI Chunkai, XI Baolong, SHI Yu, GU Yufen. Spectral analysis of A-TIG welding arc with fluorides activating flux[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 54-58. DOI: 10.12073/j.hjxb.20210201002
    [3]XIAO Xiao, ZHANG Keke, LI Fang, HUA Xueming. Analysis of arc physical property in argon-nitrogen TIG welding based on spectral diagnosis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 59-62. DOI: 10.12073/j.hjxb.2019400313
    [4]LV Xiaoqing, SHEN Jun, LI Huan, LIU Yongqiang. Droplet transfer analysis in pulsed gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(12): 39-42.
    [5]HUANG Yong, WANG Yanlei, ZHANG Zhiguo. Effect of and oxygen on welding arc of gas pool coupled activating TIG[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 31-34.
    [6]YAN Keng, YANG Gang, ZHAO Yong, GAO Lihua, LU Jiansheng. Spectrum analysis of A-TIG welding for aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (12): 73-76,105.
    [7]GUO Li, DUAN Aiqin, YU Yousheng. Spectra analysis and temperature measure of plasmas in YAG-MIG hybrid welding of 5A90[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (3): 106-108.
    [8]LI Zhiyong, WANG Bao, LI Huan, YANG Lijun. Analysis on arc spectral radiation of TIG welding process of steel and aluminum with different parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 49-52,56.
    [9]LEI Yu-cheng, LI Cai-hui, YU Wen-xia, CHENG Xiao-nong. Numerical analysis of N2-Ar protecting tungsten inert gas welding arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 25-28.
    [10]YAN Zhi-hong, ZHANG Guang-jun, QIU Mei-zhen, GAO Hong-ming, WU Lin. Monitoring and processing of weld pool images in pulsed gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 37-40.
  • Cited by

    Periodical cited type(1)

    1. 李沫琦,陈书锦,孟令斐,高源,张帅,刘建华,贺鹏. 基于激光视觉的搅拌摩擦焊缝表面缺陷检测与控制. 应用激光. 2025(02): 157-167 .

    Other cited types(2)

Catalog

    Article views (280) PDF downloads (35) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return