Advanced Search
HUO Guangrui, XUE Gang, HE Zhitao, NIU Jicheng. Analysis of droplet explosion in pulsed GMAW with high strength austenitic filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 107-112. DOI: 10.12073/j.hjxb.20210616001
Citation: HUO Guangrui, XUE Gang, HE Zhitao, NIU Jicheng. Analysis of droplet explosion in pulsed GMAW with high strength austenitic filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 107-112. DOI: 10.12073/j.hjxb.20210616001

Analysis of droplet explosion in pulsed GMAW with high strength austenitic filler wire

More Information
  • Received Date: June 15, 2021
  • Accepted Date: February 14, 2022
  • Available Online: February 18, 2022
  • The droplet transfer behavior of the high strength nickel-chromium austenitic filler wires with different carbon and nitrogen content were investigated using high-speed photography technology to reveal the droplet explosion phenomenon in pulsed gas metal arc welding process. The results show that the explosion of the droplets was closely related to the nitrogen content in the wires, but has no corresponding relationship with the carbon content. The higher the nitrogen content in the wire, the more serious the droplet explosion. It was also found that the transfer efficiency of nitrogen in deposited metal was reduced with the increase of the content in the wires. The degree of nitrogen loss was consistent with the degree of droplet explosion. Calculations showed that the solubility of nitrogen in liquid droplet decreased with the increase of temperature. The direct cause of the droplet explosion is that the solid solution nitrogen in the droplet was supersaturated instantaneously and the gas quickly escaped due to the intense high temperature of the arc during the peak current period. The nitrogen content in the austenitic filler wire should be limited to less than 0.22% to avoid droplet explosion.
  • Qulgley M B C, Webster J M. Observations of exploding droplets in pulsed-arc GMA welding[J]. Welding Journal, 1971(11): 461 − 466.
    Liu S, Siewert T A. Metal transfer in gas metal arc welding: droplet rate[J]. Welding Journal, 1989(2): 52 − 58.
    Reiichi Suzuki, Ryu Kakai. Expansion of “MX-MIG process” as pure argon gas shielded welding method-for carbon steel[J]. Kobelco Technology Review, 2013, 32(10): 24 − 32.
    Lucas W, Amin M. Effect of wire composition in spray transfer mild steel MIG welding[J]. Metal Construction, 1975(2): 77.
    文元美, 黄石生, 薛家祥, 等. 脉冲MIG焊不稳定过渡过程的观察与分析[J]. 焊接学报, 2008, 29(4): 13 − 17. doi: 10.3321/j.issn:0253-360X.2008.04.004

    Wen Yuanmei, Huang Shisheng, Xue Jiaxiang, et al. Observation and analysis of unstable metal transfer process in pulsed MIG welding[J]. Transactions of the China Welding Institution, 2008, 29(4): 13 − 17. doi: 10.3321/j.issn:0253-360X.2008.04.004
    Woods R A. Metal transfer in aluminum alloys[J]. Welding Journal, 1980(2): 59 − 66.
    Reisgen U, Mokrov O. Task of volunerical evaporation and behaviour of droplets in pulsed MIG welding of AlMg alloys[J]. Weld World, 2013, 57: 507 − 514. doi: 10.1007/s40194-013-0044-4
    Wang J, Nishimura H, Katayma S. Evaporation phenomena of magnesium from droplet at welding wire tip in pulsed MIG arc welding of aluminum alloys[J]. Science Technology Weld Join 2011, 16(5): 418-425.
    明珠, 王克鸿, 王伟, 等. 焊丝成分对高氮不锈钢GMAW稳定性及熔滴过渡行为的影响[J]. 焊接学报, 2018, 39(7): 24 − 28.

    Ming Zhu, Wang Kehong, Wang Wei, et al. Effect of welding wire compositions on welding process stability and droplet transfer behavior of high nitrogen stainless steel GMAW[J]. Transactions of the China Welding Institution, 2018, 39(7): 24 − 28.
    Yang Dongqing, Xiong Hanying, Huang Yong, et al. Droplet transfer behavior and weld formation of gas metal arc welding for high nitrogen austenitic stainless steel[J]. Journal of Manufacturing Processes, 2021, 65: 491 − 501. doi: 10.1016/j.jmapro.2021.03.048
    Wilhelm G, Gött G, Schöpp H, et al. Study of the welding gas influence on a controlled short-arc GMAW process by optical emission spectroscopy[J]. Journal of Physics D:Applied Physics, 2010, 43: 1 − 9.
    Haelsig A, Kusch M, Mayr P. Calorimetric analyses of the comprehensive heat flow for gas metal arc welding[J]. Welding in the World, 2015, 59(2): 191 − 199. doi: 10.1007/s40194-014-0193-0
    Sarizam Mamat, Titinan Methong, Shinichi Tashiro, et al. Droplet temperature measurement in metal inert gas welding process by using two color measurement method[J]. Journal of the Japan Welding Society, 2017, 35(2): 160 − 164. doi: 10.2207/qjjws.35.160s
    Soderstrom E J, Scott K M, Mendez P F. Calorimetric measurement of droplet temperature in GMAW[J]. Welding Journal, 2011, 90(4): 77 − 84.
    陈新民. 金属中气体分析的热力学基础[J]. 中南矿冶学院学报, 1979(1): 1 − 14.

    Chen Xinmin. The thermodynamic basis of gas analysis in metal[J]. Journal of Central South University(Science and Technology), 1979(1): 1 − 14.
    Dimitrov V I, Jekov K. Prediction of the solubility of nitrogen in steels obtained by pressurised electroslag remelting process[J]. Computational Materials Science, 1999, 15(4): 400 − 410. doi: 10.1016/S0927-0256(99)00018-X
    Jiang Zhouhua, Li Huabing, Shen Minghui, et al. Manufacture of nickel free high nitrogen austenitic stainless steel[C]//Proceedings of International Conference on High Nitrogen Steels. Jiuzhaigou, China, 2006: 372-380.
  • Related Articles

    [1]YUAN Kuilin, DONG Kun, LI Linyue. Two-dimensional weight function of stress intensity factors for external circumferential surface cracks in cylinders[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 61-71. DOI: 10.12073/j.hjxb.20231208001
    [2]XUE Bin, ZHANG Tianhui, XU Renping, WANG Shiyue. Effect of residual compressive stress field on fatigue crack growth of B780CF steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 103-108.
    [3]WANG Xuedong, HE Enguang, QIAN Hongli. Computational method for deformation of T joint welded by double beam laser[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 93-96.
    [4]LIU Gang, HUANG Ruxu, HUANG Yi. Equivalent hot spot stress approach for multiaxial fatigue strength assessment of complex welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 10-14.
    [5]LI Chaowen, WANG Yong, HAN Tao. Effect of welding sequences on welding residual stress and distortion of T-joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 37-40.
    [6]XU Lianyong, JING Hongyang. Stress intensity factor of interfacial crack between metal-base ceramic coating and steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 84-88.
    [7]XUE Songbai, WU Yuxiu, HAN Zongjie, HUANG Xiang. Simulation on equivalent stress in soldered joints of QFP devices with different leads[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 17-20.
    [8]ZHANG li-guo, JI Shu-de, FANG Hong-yuan, LIU Xue-song. Influence of welding sequence of subsection welding on residual stress of T joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 109-112.
    [9]ZHANG Zhong-ping, HUO Li-xing, WANG Dong-po, ZHANG Yu-feng. Effect of sprayed coatings on stress intensity factor of weld toe crack of cruciform welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 85-88.
    [10]Qiu Hai, Li Guangduo. Influence of stress ratio R on threshold value △Kth of fatigue crack propagation for welded joints of 09CuPCrNi steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (1): 24-29.
  • Cited by

    Periodical cited type(4)

    1. 陈俊刚. 低合金高强度结构钢焊接结晶裂纹预防措施探析. 中国机械. 2024(08): 57-60 .
    2. 王诗洋,刘士伟,侯星宇,孙元,曹楠,石万鹏. 焊丝成分对镍基高温合金TIG焊焊接性的影响. 焊接学报. 2023(03): 31-36+60+130-131 . 本站查看
    3. 魏超,郭枭,韩维超,姜英龙,吕晓春,徐理想. 基于原位拉伸的ERNiCrFe-13焊丝熔敷金属断裂机制分析. 焊接学报. 2023(09): 74-80+133 . 本站查看
    4. 郭枭,谷宇,韩莹,徐锴,王岩,姜英龙. Inconel 625合金堆焊金属开裂机理研究. 焊接学报. 2023(11): 117-123+135-136 . 本站查看

    Other cited types(2)

Catalog

    Article views (256) PDF downloads (34) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return