Advanced Search
BAO Liangliang, WANG Yong, ZHANG Hongjie, XU Liang, HAN Tao. Welding thermal cycle of the laser-arc hybrid welding of the EQ70 steel and its effects on the microstructure evolution of the heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 26-33. DOI: 10.12073/j.hjxb.20201207002
Citation: BAO Liangliang, WANG Yong, ZHANG Hongjie, XU Liang, HAN Tao. Welding thermal cycle of the laser-arc hybrid welding of the EQ70 steel and its effects on the microstructure evolution of the heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 26-33. DOI: 10.12073/j.hjxb.20201207002

Welding thermal cycle of the laser-arc hybrid welding of the EQ70 steel and its effects on the microstructure evolution of the heat affected zone

More Information
  • Received Date: December 06, 2020
  • Available Online: April 22, 2021
  • The Visul Environment software was used to establish the 3D model of the laser-arc hybrid welding joint of EQ70 steel. The temperature field of the laser-arc hybrid welding was numerically simulated by the SYSWELD software. The thermal cycle characteristics of the laser-arc hybrid welding and its effects on the microstructure evolution of the heat affected zone (HAZ) were analyzed, combined with the thermocouple thermometry and microstructure characterization. The results shown that the combined heat source with double ellipsoid and peak increasing cone could accurately simulate the temperature field of the laser-arc hybrid welding, and the arc zone, transition zone and laser zone had similar thermal cycles in the same HAZ micro-zones. The HAZ heating rate can reach to 400 ℃/s, the dwelling time above 1 100 ℃ was 0.79−1.33 s, and the t8/5 was 4−6 s. The coarse grained HAZ (CGHAZ) and the fine grained HAZ (FGHAZ) were mainly comprised of lath martensite. The microstructure of the inter-critically HAZ (ICHAZ) was martensite and grain boundary carbides. The sub-critically HAZ (SCHAZ) composed of tempered martensite. The rapid heating and short high temperature dwelling time of the laser-arc hybrid welding limited the austenite grain growth to some extent, and the average grain size of the CGHAZ and FGHAZ were 42.7 μm and 19.8 μm, respectively.
  • Bappa Acherjee. Hybrid laser arc welding: State-of-art review[J]. Optics & Laser Technology, 2018, 99: 60 − 71.
    Zeng Huilin, Xu Yuanbin, Wang Changjiang, et al. Research on laser-arc hybrid welding technology for long-distance pipeline construction[J]. China Welding, 2018, 27(3): 53 − 58.
    滕彬, 李小宇, 雷振, 等. 低合金高强钢激光-电弧复合热源焊接冷裂纹敏感性分析[J]. 焊接学报, 2010, 31(11): 61 − 64.

    Teng Bin, Li Xiaoyu, Lei Zhen, et al. Analysis on cold crack sensitivity of low alloy high strength steel weld by laser-arc hybrid welding[J]. Transactions of the China welding institution, 2010, 31(11): 61 − 64.
    严春妍, 易思, 张浩, 等. S355钢激光-MIG复合焊接头显微组织和残余应力[J]. 焊接学报, 2020, 41(6): 12 − 18. doi: 10.12073/j.hjxb.20191014001

    Yan Chunyan, Yi Si, Zhang Hao, et al. Investigation of microstructure and stress in laser-MIG hybrid welded S355 steel plates[J]. Transactions of the China Welding Institution, 2020, 41(6): 12 − 18. doi: 10.12073/j.hjxb.20191014001
    肖荣诗, 吴世凯. 激光-电弧复合焊接的研究进展[J]. 中国激光, 2008, 35(11): 1680 − 1685. doi: 10.3321/j.issn:0258-7025.2008.11.004

    Xiao Rongshi, Wu Shikai. Progress on laser-arc hybrid welding[J]. Chinese Journal of Lasers, 2008, 35(11): 1680 − 1685. doi: 10.3321/j.issn:0258-7025.2008.11.004
    Wang X N, Zhang S H, Zhou J, et al. Effect of heat input on microstructure and properties of hybrid fiber laser-arc weld joints of the 800 MPa hot-rolled Nb-Ti-Mo microalloyed steels[J]. Optics & Lasers in Engineering, 2017, 91: 86 − 96.
    Hyatt C V, Magee K H, Porter J F, et al. Laser-assisted gas metal arc welding of 25-mm-thick HY-80 plate[J]. Welding Journal, 2001, 80(7): 163 − 172.
    Bao L L, Wang Y, Han T. Microstructure and mechanical characterization of high strength low alloy steel welded joint by hybrid laser arc welding[C]//2019 the 7th International Conference on Mechanical Engineering, Materials Science and Civil Engineering. IOP Conference Series: Materials Science and Engineering. Sanya, China, 2020: 247−256.
    Bao L L, Wang Y, Han T. Study on microstructure-toughness relationship in heat affected zone of EQ70 steel by laser-arc hybrid welding[J]. Materials Characterization. 2021, 171: 110788.
    吴振, 王发展, 安高灵,等. 大型复杂结构件高效焊接热源[J]. 焊接学报, 2015, 36(10): 61 − 64.

    Wu Zhen, Wang Fazhan, An Gaoling, et al. Research on efficient welding heat source model for large and complex structures[J]. Transactions of the China Welding Institution, 2015, 36(10): 61 − 64.
    Xu G, Wu C, Qin G. Three thermal analysis models for laser, GMAW-P and laser+GMAW-P hybrid welding[J]. China Welding, 2009, 18(1): 35 − 39.

Catalog

    Article views (397) PDF downloads (48) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return