Advanced Search
SUN Lei, ZHANG Yi, CHEN Minghe, ZHANG Liang, MIAO Naiming. Finite element analysis of solder joint reliability of 3D packaging chip[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 49-53. DOI: 10.12073/j.hjxb.20201021002
Citation: SUN Lei, ZHANG Yi, CHEN Minghe, ZHANG Liang, MIAO Naiming. Finite element analysis of solder joint reliability of 3D packaging chip[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 49-53. DOI: 10.12073/j.hjxb.20201021002

Finite element analysis of solder joint reliability of 3D packaging chip

More Information
  • Received Date: October 20, 2020
  • Available Online: January 25, 2021
  • In this paper, Sn and Sn3.9Ag0.6Cu solders, which are widely used in industry, were selected as bonding materials for 3D packaging chips. The 3D packaging model was established using ANSYS finite element software. Based on the Garofalo-Arminius’s constitutive equation, the process of thermal cycle under the temperature condition from −55 ~ 125 °C. In addition, the influence of packaging structure and process parameters on the reliability of solder joint was discussed by Taguchi method. The results show that the contact area between Cu pillar and solder joint is the weak area of the whole structure, and the maximum stress appears at the second solder joint in the rightmost row of the intermetallic compound (IMC) solder joint array. Through the Taguchi method and combined with the finite element simulation results, the contribution of the four factors to S/N was obtained as follows: solder joint array, solder joint height, chip thickness, solder joint material, of which the solder joint array has the largest influence, followed by solder joint height and chip thickness, solder joint material has the least influence. Based on the optimization design, the optimal matching combination was solder joint array 3 × 3, solder joint height 0.02 mm, chip thickness 0.2 mm and solder joint material Cu6Sn5.
  • Sun L, Chen M H, Zhang L, et al. Recent progress in SLID bonding in novel 3D-IC technologies[J]. Journal of Alloys and Compounds, 2020, 818: 152825. doi: 10.1016/j.jallcom.2019.152825
    Hang C J, Tian Y H, Zhang R, et al. Phase transformation and grain orientation of Cu-Sn intermetallic compounds during low temperature bonding process[J]. Journal of Materials Science: Materials in Electronics, 2013, 24(10): 3905 − 3913. doi: 10.1007/s10854-013-1337-5
    吕亚平, 刘孝刚, 陈明祥, 等. 含TSV结构的3D封装多层堆叠Cu/Sn键合技术[J]. 先进封装技术, 2014, 39(1): 64 − 70.

    Lü Yaping, Liu Xiaogang, Chen Mingxiang, et al. Multilayer stack Cu/Sn bonding technology for 3D packaging with TSV[J]. Advanced Packaging Technologies, 2014, 39(1): 64 − 70.
    张亮, 韩继光, 郭永环, 等. WLCSP器件Sn3.9Ag0.6Cu焊点疲劳寿命预测[J]. 焊接学报, 2012, 33(3): 97 − 100.

    Zhang Liang, Han Jiguang, Guo Yonghuan, et al. Fatigue life prediction of Sn3.9Ag0.6Cu-soldered joints in WLCSP device[J]. Transactions of the China Welding Institution, 2012, 33(3): 97 − 100.
    田艳红, 王宁, 杨东升, 等. 三维封装芯片键合IMC焊点应力分析及结构优化[J]. 焊接学报, 2012, 33(8): 17 − 20.

    Tian Yanhong, Wang Ning, Yang Dongsheng, et al. Stress analysis and structure optimization of IMC joints in 3D package[J]. Transactions of the China Welding Institution, 2012, 33(8): 17 − 20.
    邵良滨, 黄春跃, 梁颖, 等. 基于热-结构耦合的叠层金凸点应力分析[J]. 焊接学报, 2017, 38(1): 31 − 34.

    Shao Liangbin, Huang Chunyue, Liang Ying, et al. Study on stacked AU bumps stress based on thermal-structure coupling[J]. Transactions of the China Welding Institution, 2017, 38(1): 31 − 34.
    陈照辉. 大功率LED封装和硅通孔三维封装工艺及可靠性数值仿真与试验研究[D]. 上海: 上海交通大学, 2012.

    Chen Zhaohui. Study on process and reliability of high power LED packaging and through silicon via 3D packaging by simulation and experiment[D]. Shanghai: Shanghai Jiao Tong University, 2012.
    韩立帅, 黄春跃, 梁颖, 等. 3D封装微尺度CSP焊点随机振动应力应变分析[J]. 焊接学报, 2019, 40(6): 64 − 70. doi: 10.12073/j.hjxb.2019400156

    Han Lishuai, Huang Chunyue, Liang Ying, et al. Analysis of stress strain and shape size optimization of 3D micro-scale CSP solder joints in random vibration[J]. Transactions of the China Welding Institution, 2019, 40(6): 64 − 70. doi: 10.12073/j.hjxb.2019400156
    Annuar S, Mahmoodian R, Hamdi M, et al. Intermetallic compounds in 3D integrated circuits technology: a brief review[J]. Science and Technology of Advanced Materials, 2017, 18(1): 693 − 703. doi: 10.1080/14686996.2017.1364975
    Lall P, Islam M N, Singh N, et al. Model for BGA and CSP reliability in automotive underhood applications[J]. IEEE Transactions on Components and Packaging Technologies, 2004, 27(3): 585 − 593. doi: 10.1109/TCAPT.2004.831824
    梁颖, 黄春跃, 黄伟, 等. 基于正交设计的WLCSP柔性无铅焊点随机激励应力应变分析[J]. 焊接学报, 2016, 37(2): 13 − 16.

    Liang Ying, Huang Chunyue, Huang Wei, et al. Stress and strain distribution of lead-free solder joints with compliant layer in wafer level chip scale package under random vibration based on orthogonal design[J]. Transactions of the China Welding Institution, 2016, 37(2): 13 − 16.
    胡丹, 沈骏, 陈旭, 等. 正弦振动引起的BGA焊点Sn-Cu金属间化合物失效机理[J]. 中国有色金属学报, 2019, 29(4): 756 − 763.

    Hu Dan, Shen Jun, Chen Xu, et al. Fracture mechanism of Sn-Cu intermetallic compound layer in BGA solder joint induced by sinusoidal vibration[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(4): 756 − 763.
    张亮, 韩继光, 郭永环, 等. WLCSP器件结构优化模拟及无铅焊点可靠性[J]. 焊接学报, 2012, 33(7): 53 − 56.

    Zhang Liang, Han Jiguang, Guo Yonghuan, et al. Optimum simulation and soldered joints reliability of WLCSP device[J]. Transactions of the China Welding Institution, 2012, 33(7): 53 − 56.
    Zhang L, Han J G, Guo Y H, et al. Anand model and FEM analysis of SnAgCuZn lead-free solder joints in Wafer Level Chip Scale Packaging devices[J]. Microelectronics Reliability, 2014, 54(1): 281 − 286. doi: 10.1016/j.microrel.2013.07.100
    Samavatian M, Samavation V, Moayeri M, et al. Effect of stress triaxiality on damage evolution of porous solder joints in IGBT discretes[J]. Journal of Manufacturing Processes, 2018, 32: 57 − 64. doi: 10.1016/j.jmapro.2018.01.025
    Wu K C, Lin S Y, Hung T Y, et al. Reliability assessment of packaging solder joints under different thermal cycle loading rates[J]. IEEE Transactions on Device and Materials Reliability, 2015, 15(3): 437 − 442. doi: 10.1109/TDMR.2015.2462726
    Zhang L, Sun L, Guo Y H, et al. Reliability of lead-free solder joints in CSP device under thermal cycling[J]. Journal of Materials Science: Materials in Electronics, 2014, 25: 1209 − 1213. doi: 10.1007/s10854-014-1711-y
    Ladani L J. Stress analysis of 3-dimensional IC package as function of structural design parameters[J]. Microelectronic Engineering, 2010, 87(10): 1852 − 1860. doi: 10.1016/j.mee.2009.11.002
    Li M H C, Hong S M. Optimal parameter design for chip-on-film technology using the Taguchi method[J]. The International Journal of Advanced Manufacturing Technology, 2005, 25(1−2): 145 − 153. doi: 10.1007/s00170-003-1824-6
    Tsai T N, Liukkonen M. Robust parameter design for the micro-BGA stencil printing process using a fuzzy logic-based Taguchi method[J]. Applied Soft Computing, 2016, 48: 124 − 136. doi: 10.1016/j.asoc.2016.06.020
    Mertol A. Application of the Taguchi method on the robust design of molded 225 plastic ball grid array packages[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 1995, 18(4): 734 − 743. doi: 10.1109/96.475283
  • Related Articles

    [1]HAN Lishuai, HUANG Chunyue, LIANG Ying, KUANG Bing, HUANG Genxin. Analysis of stress strain and shape size optimization of 3D micro-scale CSP solder joints in random vibration[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 64-70. DOI: 10.12073/j.hjxb.2019400156
    [2]XIONG Mingyue1, ZHANG Liang1,2, LIU Zhiquan2, YANG Fan1, ZHONG Sujuan3, MA Jia3, BAO Li3. Structure optimization design of CSP device based on Taguchi method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 51-54. DOI: 10.12073/j.hjxb.2018390121
    [3]WAN Xiaodong, XU Jing, WANG Yuanxun, ZHANG Peng. Numerical simulation on stress and deformation behavior in resistance spot welding of dual phase steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 79-82.
    [4]REN Ning, TIAN Ye, CAI Gangyi, SHANG Shuanjun, WU Fengshun. Thermal failure analysis of micro copper pillar bumps for high density flip chip packaging based on Taguchi method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 35-38.
    [5]XU Fujia, LÜ Yaohui, LIU Yuxin, XU Binshi, HE Peng. Prediction model of bead geometry shaped by rapid prototyping based on pulsed PAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 49-52.
    [6]DAI Wei, XUE Songbai, ZHANG Liang, JI Feng. Reliability analysis of PBGA soldered joints based on Taguchi method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 81-84.
    [7]YOU Min, LI Zhi, ZHAO Meirong, GUO Bin, YAN Jialing. Numerical analysis on stress distribution in adhesive-welded double lap joint of aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 13-16.
    [8]TAN Guangbin, YANG Ping, CHEN Zixia. Taguchi method application for thermomechanical reliability in PBGA solder joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 97-100.
    [9]QIU Chang-jun, ZHOU Wei, HE Bin, FAN Xiang-fang. Study and finite element method analysis for bond strength of high-strength coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (4): 105-107.
    [10]Meng Gongge. Reliability and precision of blind hole drilling method for determining high residual stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 235-238.
  • Cited by

    Periodical cited type(6)

    1. 汪松英,李志豪,曾世堂,洪少健,丘翰琳,苏慧珍,杜昆. 功率模块封装的纳米银焊膏烧结工艺气氛影响研究. 广州化工. 2025(08): 91-94 .
    2. 奚思,刘斌,蔡传辉,李金伟,陆玉. 纳米银烧结设备热压系统设计及仿真分析. 电子工业专用设备. 2025(02): 6-9+30 .
    3. 李志豪,汪松英,洪少健,孙啸寒,曾世堂,杜昆. 镀银板表面粗糙度对纳米银焊膏快速烧结互连质量的影响. 电子与封装. 2024(07): 5-11 .
    4. 鲍金祥,关俊卿,何金江,王鹏,侯智超. 大功率器件低温烧结纳米银膏的研究进展. 贵金属. 2024(S1): 71-77 .
    5. 黄玺,张亮,王曦,陈晨,卢晓. 电子封装用纳米级无铅钎料的研究进展. 材料导报. 2024(23): 136-148 .
    6. 汪智威,林丽婷,李欣. 低温烧结银与金基界面互连研究进展. 焊接学报. 2023(12): 116-123+143-144 . 本站查看

    Other cited types(6)

Catalog

    Article views (800) PDF downloads (91) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return