Advanced Search
MA Zongbiao, HUANG Pengfei, ZHANG Xuanning, WANG Yachun, DAI Hongbo, WANG Guanghui. Experimental study on deposition rate of high efficiency hot wire GMAW welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 44-48. DOI: 10.12073/j.hjxb.20200605004
Citation: MA Zongbiao, HUANG Pengfei, ZHANG Xuanning, WANG Yachun, DAI Hongbo, WANG Guanghui. Experimental study on deposition rate of high efficiency hot wire GMAW welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 44-48. DOI: 10.12073/j.hjxb.20200605004

Experimental study on deposition rate of high efficiency hot wire GMAW welding process

More Information
  • Received Date: June 04, 2020
  • Available Online: March 05, 2021
  • Alternating current and hot wire GMAW process is a kind of efficient welding process, the main arc of which is the traditional GMAW arc. Under the action of AC pulse preheating current, the filler wire can flow form a closed loop with the welding pool structure in the base metal. The current flows through the loop to generate resistance heat to preheat the filler wire. The filled wire preheated to high temperature will melt rapidly under the thermal influence of the liquid metal after entering the molten pool. In this experiment, the high efficiency hot wire GMAW process was studied. The study found the matching rules among the parameters such as the preheating current of the filler wire, the extension length of the filler wire, the distance between the filler wire, the main arc welding specification, etc. Finally, it was realized the deposition rate above 20 kg/h. Through the analysis of the influence rules of the above factors on the deposition efficiency, the results show that: compared with the traditional welding process, hot wire GMAW has obvious advantages in improving the deposition rate and deposition coefficient. This process has a broad application prospect in the field of high strength steel thick plate welding.
  • 范成磊, 梁迎春, 杨春利, 等. 铝合金高频感应热丝TIG焊接方法[J]. 焊接学报, 2006, 27(7): 49 − 52. doi: 10.3321/j.issn:0253-360X.2006.07.013

    Fan Chenglei, Liang Yingchun, Yang Chunli, et al. TIG welding method of aluminum alloy high-frequency induction hot wire[J]. Transactions of the China Welding Institution, 2006, 27(7): 49 − 52. doi: 10.3321/j.issn:0253-360X.2006.07.013
    吕世雄, 孙清洁, 范阳阳, 等. 电弧热丝TIG焊工艺特点分析[J]. 焊接, 2007(10): 41 − 43. doi: 10.3969/j.issn.1001-1382.2007.10.010

    Lü Shixiong, Sun Qingjie, Fan Yangyang, et al. Analysis of the characteristics of arc hot wire TIG welding process[J]. Welding & Joining, 2007(10): 41 − 43. doi: 10.3969/j.issn.1001-1382.2007.10.010
    Aravinda P, Irappa S, Basavarajappa, et al. Assessment of impact strength of welds produced by cold wire and hot wire gas tungsten arc welding (GTAW) processes[J]. Materials Today: Proceedings, 2020, 24(Pt 2): 983 − 994.
    He H, Wu C, Lin S, et al. Pulsed TIG welding-brazing of aluminum-stainless steel with an Al-Cu twin hot wire[J]. Journal of Materials Engineering & Performance, 2019, 28(3): 1180 − 1189.
    Liu W, Ma J, Liu S, et al. Experimental and numerical investigation of laser hot wire welding[J]. International Journal of Advanced Manufacturing Technology, 2015, 78(9−12): 1485 − 1499. doi: 10.1007/s00170-014-6756-9
    苗玉刚, 马照伟, 赵慧慧, 等. 高强钢旁路热丝等离子弧打底焊接头组织和性能[J]. 焊接学报, 2019, 40(1): 99 − 103.

    Miao Yugang, Ma Zhaowei, Zhao Huihui, et al. Microstructure and performance of backing welding joint of high strength steel by bypass-current wire-heating PAW[J]. Transactions of the China Welding Institution, 2019, 40(1): 99 − 103.
    余淑荣, 程能第, 黄健康, 等. 旁路耦合电弧增材制造热过程与组织关系[J]. 焊接学报, 2019, 40(8): 1 − 6.

    Yu Shurong, Cheng Nengdi, Huang Jiankang, et al. Relationship between thermal process and microstructure during additive manufacturing of double-electrode gas metal arc welding[J]. Transactions of the China Welding Institution, 2019, 40(8): 1 − 6.
    Shah P, Agrawal C. A review on twin tungsten inert gas welding process accompanied by hot wire pulsed power source[J]. Journal of Welding and Joining, 2019, 37(2): 41 − 51.
    Kim K, Bang H, Bang H, et al. Hot wire laser welding of multilayer for narrow gap-analysis of wire melting/transfer and arc formation phenomenon by high speed imaging[J]. Journal of Welding and Joining, 2016, 34(5): 26 − 32.
    李泳格. 一种新型热丝TIG复合焊接装置的研制[D]. 北京: 北京工业大学, 2015.

    Li Yongge. Development of a new hot wire TIG composite welding device[D]. Beijing: Beijing University of Technology, 2015.
  • Related Articles

    [1]BAO Liangliang, LIU Fujian, XU Yanhong, ZHANG Xinming, OUYANG kai, HAN Tao. Investigation on microstructure and impact toughness of double-pass laser-arc hybrid welding heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 90-99. DOI: 10.12073/j.hjxb.20220303001
    [2]SHEN Yu, WAN Xiangliang, LIU Yu, LI Guangqiang, WU Kaiming. Effect of Zr on second-phase particle and impact toughness in the heat-affected zone of high-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 55-62. DOI: 10.12073/j.hjxb.2019400209
    [3]XIAO Xiaoming, PENG Yun, YANG Shuai, TIAN Zhiling. Effect of Cr content on deposited metal toughness of weathering steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 26-30.
    [4]CHAI Feng, YANG Cai-fu, ZHANG Yong-quan, SU Hang, XU Zhou. Coarse-grained heat affected zone microstructure and toughness of copper-bearing age-hardening steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 56-60.
    [5]LI Hong-wei, HE Chang-hong, PENG Yun, TIAN Zhi-ling, LIU Rong-pei, CHEN Yan-qing. High toughness submerged arc welding wire of ship steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 96-100.
    [6]XU Xue-li, XIN Xi-xian, SHI Kai, ZHOU Yong. Influence of welding thermal cycle on toughness and microstructure in grain-coarsening region of X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (8): 69-72.
    [7]YIN Gui quan, CHA Xian zhu, LU Bai zhong. Granular bainite in microstructures after welding and its effects on impact toughness in STE355 steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 55-58.
    [8]Zhang Xianhui, Jiao Wei, Tan Changying. HAZ Structure, Toughness and Characteristics to Hydrogen-Induced Cracking(HIC) of Steel 20MnNiMo[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (1): 9-12.
    [9]Yan Cheng, Chen Jianhong, Luo Yongchun. Microstructures and toughness of local brittle zone of HSLA steel multipass weld metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (1): 21-25.
    [10]Yang Yongxing, He Huaixing. THE HELPFUL EFFECT OF ANGLE RESTRAINT ON WELDING HAZ TOUGHNESS IN 15MnMoVNREs STEEL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1990, (1): 36-42.
  • Cited by

    Periodical cited type(10)

    1. 马一鸣,郭枭,韩莹,姜英龙,刘自成,甘洪丰,宋昌洪. 热输入对吉帕钢CGHAZ低温冲击韧性影响机理. 焊接学报. 2024(12): 90-98 . 本站查看
    2. 陈自振,李天伟,任建志,韩卫亮,范伟. 油气管道激光电弧焊工艺安全条件研究与应用. 安全、健康和环境. 2023(02): 22-27 .
    3. 张明鲲,王新辉,张云动,梁治国. 热处理对特种设备用高强钢激光–电弧复合焊接头氢脆断裂行为的影响研究. 精密成形工程. 2023(05): 115-122 .
    4. 牟梓豪,滕彬,徐锴. Q1400超高强钢激光-MAG复合焊与MAG组织及性能对比. 机械制造文摘(焊接分册). 2023(03): 25-30 .
    5. 鲍亮亮,刘福建,徐艳红,张新明,欧阳凯,韩涛. 双道次激光电弧复合焊热影响区微观组织与冲击韧性. 机械制造文摘(焊接分册). 2023(03): 9-17+24 .
    6. 曾道平,安同邦,郑韶先,马成勇. 热输入对船用440 MPa级低合金高强度钢焊缝组织及性能的影响. 焊接学报. 2023(08): 74-82+133 . 本站查看
    7. 王鹏博,张永强,蔡宁,付参,伊日贵,鞠建斌,陈炜煊,余洋. 马氏体含量对合金化热镀锌双相钢电阻点焊接头组织与性能的影响. 精密成形工程. 2023(10): 160-167 .
    8. 鲍亮亮,徐艳红,张新明,欧阳凯. 一次峰值温度对激光电弧复合焊热模拟临界再热粗晶区组织与韧性的影响. 材料导报. 2023(S2): 383-387 .
    9. 朱东芳,朱加雷,焦向东,苗春雨,周飞鸿,蔡志海,颜秉宇. 921A钢激光-MAG复合焊接头组织及性能. 焊接. 2022(09): 25-29+42 .
    10. 鲍亮亮,刘福建,徐艳红,张新明,欧阳凯,韩涛. 双道次激光电弧复合焊热影响区微观组织与冲击韧性. 焊接学报. 2022(12): 90-99+118-119 . 本站查看

    Other cited types(0)

Catalog

    Article views (586) PDF downloads (32) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return