Citation: | LIU Renpei, CHEN Lili, WEI Yanhong. Simulation of microstructure evolution of weld pool and heat-affected zone during TIG welding of nickel-base alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 64-68. DOI: 10.12073/j.hjxb.20190905006 |
Wei H L, Elmer J W, Debroy T. Origin of grain orientation during solidification of an aluminum alloy[J]. Acta Materialia, 2016, 115: 123 − 131. doi: 10.1016/j.actamat.2016.05.057
|
Li X Q, Hao B H, Chen Y X, et al. The microscopic mechanical performance for nonuniform welded joint of nickel-based alloy with nanoindentation[J]. China Welding, 2019, 28(2): 29 − 34.
|
Pavlyk V, Dilthey U. Simulation of weld solidification microstructure and its coupling to the macroscopic heat and fluid flow modelling[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12(1): 33 − 45. doi: 10.1088/0965-0393/12/1/S03
|
Zhan X H, Dong Z B, Wei Y H, et al. Simulation of grain morphologies and competitive growth in weld pool of Ni-Cr alloy[J]. Journal of Crystal Growth, 2009, 311(23−24): 4778 − 4783. doi: 10.1016/j.jcrysgro.2009.09.008
|
Han R H, Dong W C, Lu S P, et al. Modeling of morphological evolution of columnar dendritic grains in the molten pool of gas tungsten arc welding[J]. Computational Materials Science, 2014, 95: 351 − 361. doi: 10.1016/j.commatsci.2014.07.052
|
张敏, 徐蔼彦, 汪强, 等. Fe-C合金焊接熔池凝固过程CET转变的数值模拟[J]. 焊接学报, 2016, 37(2): 5 − 8.
Zhang Min, Xu Aiyan, Wang Qiang, et al. Numerical simulation of CET transformation in the solidificationof Fe-C alloy weld pool[J]. Transactions of the China Welding Institution, 2016, 37(2): 5 − 8.
|
张敏, 周玉兰, 薛覃, 等. Ti-45Al合金焊接熔池凝固过程数值模拟[J]. 焊接学报, 2018, 39(3): 6 − 10. doi: 10.12073/j.hjxb.2018390058
Zhang Min, Zhou Yulan, Xue Qin, et al. Numerical simulation of solidification process of Ti-45Al alloy weld pool[J]. Transactions of the China Welding Institution, 2018, 39(3): 6 − 10. doi: 10.12073/j.hjxb.2018390058
|
宋奎晶. TA15钛合金TIG焊热影响区组织模拟及力学本构关系研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
|
Rappaz M, Gandin Ch A, Desbiolles J L, et al. Prediction of grain structures in various solidification processes[J]. Metallurgical and Materials Transactions A, 1996, 27(3): 695 − 705. doi: 10.1007/BF02648956
|
Gu C, Wei Y H, Liu R P, et al. Effect of temperature and fluid flow on dendrite growth during solidification of Al-3 Wt Pct Cu alloy by the two-dimensional cellular automaton method[J]. Metallurgical and Materials Transactions B, 2017, 48(6): 3388 − 3400. doi: 10.1007/s11663-017-1060-3
|
He Y Z, Ding H L, Liu L F, et al. Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle[J]. Materials Science & Engineering A, 2006, 429(1-2): 236 − 246.
|
金朝阳, 俞栋华, 吴欣桐. 热挤压态纯镁晶粒长大行为的元胞自动机模拟[J]. 塑性工程学报, 2016, 23(6): 216 − 222.
Jin Zhaoyang, Yu Donghua, Wu Xintong. Simulation of grain growth behavior of hot-extruded pure magnesium by cellular automata[J]. Journal of Plasticity Engineering, 2016, 23(6): 216 − 222.
|
陈晶, 李少华, 颜飞雪, 等. JMatPro软件在GH3039真空扩散焊工艺研究中的应用[J]. 热加工工艺, 2018, 47(11): 232−235.
Chen Jing, Li Shaohua, Yan Feixue, et al. Application of JMatPro software in research of GH3039 vacuum diffusion welding process[J].Hot Working Technology, 2018, 47(11): 232−235.
|
Dong Z B, Song K J, Wang S J, et al. Solute redistribution with shear flow in molten pool of Ni-Cr alloy[J]. Journal of Materials Science & Technology, 2011, 27(2): 183 − 188.
|
[1] | FU Kuijun, ZHAO Jingwei, GAO Mingze, LENG Xuesong, YAN Jiuchun. Grain growth and phase transformation in the welded joint HAZ of TiNbV microalloyed steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 17-22. DOI: 10.12073/j.hjxb.20190715004 |
[2] | ZHENG Huaibei, YE Xiaoning, ZHANG Xuefeng, JIANG Laizhu, LIU Zhenyu, WANG Guodong. Microstructure transformation,grain growth and precipitated phase of 12%Cr ferritic stainless steel in coarse grain zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (6): 37-40. |
[3] | WU Wei, GAO Hongming, CHENG Guangfu, WU Lin. Influence of elevated temperature holding time on microstructure and properties in heat affected zone of fine grained titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 5-8,12. |
[4] | ZHANG Genyuan, XU Maili, TIAN Songya, Wen Fang. Genetic algorithm of grain growth in heat-affected zone of 45 steel AC flash butt welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 79-82. |
[5] | LI Yubin, MENG Daqiao, LIU Kezhao, XIE Zhiqiang. Simulation of the microstructure evolution of welding-grain growth in heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 25-28,32. |
[6] | WU Wei, GAO Hongming, CHENG Guangfu, WU Lin. Grain growth in heat affected zone of fine grained titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (10): 57-60, 64. |
[7] | YU Shengfu, YANG Ke, LEI Yi, YANG Hua. Grain refinement of heat affected zone of high strength low alloy steel by large heat input welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 17-20. |
[8] | WU Wei, GAO Hongming, WU Lin. Microstructures in CGHAZ and mechanical properties of welded joint during welding of fine grain titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 61-64. |
[9] | WEN Jun qin, LIU Xin tian, MO Chun li, ZHANG Shi xing. Microstructure simulation of grain growth in heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 48-51. |
[10] | QU Zhao-xia, TIAN Zhi-ling, DU Ze-yu, HE Chang-hong, ZHANG Xiao-mu, YANG Bai. Grain Growth in HAZ of Ultra-fine Grain Steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 9-12. |