Advanced Search
ZHANG Timing, DENG Yunfa, CHEN Yuhua, FANG Yu, HU Xuebing. Effect of ultrasonic impact treatment on corrosion behavior of FSW joints of 2A12 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 38-41, 78. DOI: 10.12073/j.hjxb.20200403005
Citation: ZHANG Timing, DENG Yunfa, CHEN Yuhua, FANG Yu, HU Xuebing. Effect of ultrasonic impact treatment on corrosion behavior of FSW joints of 2A12 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 38-41, 78. DOI: 10.12073/j.hjxb.20200403005

Effect of ultrasonic impact treatment on corrosion behavior of FSW joints of 2A12 aluminum alloy

More Information
  • Received Date: April 02, 2020
  • Available Online: October 20, 2020
  • In this work, the corrosion behavior of friction stir welding (FSW) joints of 2A12 aluminum alloy with and without ultrasonic impact treatment (UIT) was investigated by immersion corrosion test and polarization curve test in 3.5% NaCl aqueous solution. The results showed that the average corrosion rate of the joints with UIT was about half of that without UIT. The corrosion potential of the heat affected zone (HAZ) without UIT was −0.629 V (Ag/AgCl), indicating the worst corrosion resistance. And the average corrosion depth of HAZ induced by pitting corrosion and intergranular corrosion was about 125 μm. After UIT, the corrosion potentials of each sub-area of the FSW joints increased, and the corresponding corrosion current density decreased. The maximum depth of corrosion pit did not exceed 40 μm. The whole surface of the joint exhibited a form of uniform corrosion. Ultrasonic impact makes the surface grains of the material finer and denser, and the bond between the strengthening phase and the base metal is tighter, which is the main reason for the improvement of the corrosion resistance of the material. The main reason for the improvement of the corrosion resistance of the joints was that the grains of the material were refined and densified after UIT.
  • 朱有利, 李占明, 韩志鑫, 等. 超声冲击处理对2A12铝合金焊接接头表层组织性能的影响[J]. 稀有金属材料与工程, 2010, 39(1): 130 − 133.

    Zhu Youli, Li Zhanming, Han Zhixin, et al. Effect of ultrasonic impact treatment on microstructure and properties of surface layer of 2A12 aluminum alloy weld joint[J]. Rage Metal Materials and Engineering, 2010, 39(1): 130 − 133.
    刘大海, 宗崇文, 黎俊初, 等. 热处理对2A12铝合金搅拌摩擦焊板件时效成形的影响[J]. 材料热处理导报, 2015, 36(6): 71 − 77.

    Liu Dahai, Zong Chongwen, Li Junchu, et al. Effects of heat treatment on creep age forming formability of friction stir welded 2A12 aluminum alloy sheet[J]. Transactions of Materials and Heat Treatment, 2015, 36(6): 71 − 77.
    邓云发, 张体明, 干贤威, 等. 超声冲击对铝合金搅拌摩擦焊接头组织及性能的影响[J]. 精密成形工程, 2019, 11(5): 78 − 85. doi: 10.3969/j.issn.1674-6457.2019.05.011

    Deng Yunfa, Zhang Timing, Gan Xianwei, et al. Effect of ultrasonic impact on microstructure and properties of friction stir welded aluminum alloy[J]. Journal of Netshape Forming Engineering, 2019, 11(5): 78 − 85. doi: 10.3969/j.issn.1674-6457.2019.05.011
    Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive industry[J]. Materials Science & Engineering A, 2000, 280(1): 37 − 49.
    Williams J C, Starke E A. Progress in structural materials for aerospace systems[J]. Acta Materialia, 2003, 51(19): 5775 − 5799. doi: 10.1016/j.actamat.2003.08.023
    Tracie P. Friction stir welding of metal matrix composites foruse in aerospace structures[J]. Acta Astronautica, 2014, 93(1): 366 − 373.
    Wang G Q, Zhao Y H, Zhang L N, et al. A new weld repair technique for friction stir welded aluminium structure: inertia friction pull plug welding[J]. China Welding, 2017, 26(4): 56 − 64.
    马云龙, 杨子奇, 李劲风. 2195铝锂合金摩擦搅拌焊接头组织与腐蚀行为[J]. 焊接学报, 2019, 40(10): 142 − 147.

    Ma Yunlong, Yang Ziqi, Li Jinfeng. Structure and corrosion behavior of friction stir weld joint of 2195 Al-Li alloy[J]. Transactions of the China Welding Institution, 2019, 40(10): 142 − 147.
    张华, 崔冰, 林三宝, 等. 7050铝合金搅拌摩擦焊接头腐蚀行为分析[J]. 焊接学报, 2018, 39(7): 71 − 74.

    Zhang Hua, Cui Bing, Lin Sanbao, et al. Corrosion behavior of 7050 aluminum alloy friction stir welding joint[J]. Transactions of the China Welding Institution, 2018, 39(7): 71 − 74.
    Liu J L, Zhu H, Jiang Y, et al. Evolution of residual stress field in 6N01 aluminum alloy friction stir welding joint[J]. China Welding, 2018, 27(4): 18 − 26.
    Urso G, Giardini C, Lorenzi S, et al. The effects of process parameters on mechanical properties and corrosion behavior in friction stir welding of aluminum alloys[J]. Procedia Engineering, 2017, 183(5): 270 − 276.
    Liu P, Hu L L, Zhang Q H, et al. Effect of aging treatment on microstructure and corrosion behavior of Al-Zn-Mg aluminum alloy in aqueous solutions with different[J]. Journal of Materials Science & Technology, 2019, 45(3): 13 − 27.
    王磊, 李平赟, 回丽, 等. 盐水环境下2A12铝合金搅拌摩擦焊缝腐蚀速率[J]. 焊接学报, 2016, 37(1): 15 − 19.

    Wang Lei, Li Pingyun, Hui Li, et al. Corrosion rate of 2A12 aluminum alloy friction stir weld under salt solution[J]. Transactions of the China Welding Institution, 2016, 37(1): 15 − 19.
  • Related Articles

    [1]ZHANG Ke, LIU Wensheng, XU Dangwei, HUANG Zhong, PAN Hongbo, LIU Zhengdong, ZHANG Xi. Mechanical properties and simulated behavior in industrial atmosphere of welded joints of Q500qENH bridge weathering steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 61-72. DOI: 10.12073/j.hjxb.20240207002
    [2]XU Hao, CAO Rui, FAN Ding. Corrosion behavior of aluminum/steel dissimilar metal welded joints and influential factors: A review[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 116-128. DOI: 10.12073/j.hjxb.20230718001
    [3]CHI Luxin, GU Lingxiang, XU Huibin, HUANG Yan, QIN Quan, RAN Yang. Corrosion behavior of joints by electromagnetic pulse welding with aluminum to steel in neutral salt spray[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 40-47. DOI: 10.12073/j.hjxb.20220909003
    [4]GONG Lihua, GUO Weimin. Effect of UV light on the corrosion behaviors of aluminum alloy welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 106-112. DOI: 10.12073/j.hjxb.20210827002
    [5]WANG Lei, FU Qiang, AN Jinlan, ZHOU Song. Multi-zone fatigue crack growth behavior of friction stir welding of 2A12-T4 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 24-29. DOI: 10.12073/j.hjxb.20200724001
    [6]ZHANG Hua<sup>1</sup>, CUI Bing<sup>1</sup>, LIN Sanbao<sup>2</sup>, SHI Gongqi<sup>3</sup>. Corrosion behavior of friction stir welded joints of 7050 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 71-74. DOI: 10.12073/j.hjxb.2018390178
    [7]LIU Yuwei1,2, YIN Qi1,2, WANG Zhenyao1, CAO Gongwang1, CAO Yan3, HUO Yang3, LV Gang3. Corrosion behavior of hot dip galvanized coating exposed in a simulated coastal-industrial atmosphere[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 87-91. DOI: 10.12073/j.hjxb.2018390129
    [8]WANG Lei, LI Pingyun, HUI Li, JI Shude, ZHANG Zhanchang. Corrosion rate of 2A12 aluminum alloy friction stir weld under salt solution[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 15-19.
    [9]ZHANG Hua, SUN Datong, ZHANG He, MA Fangfang. Corrosion behavior of friction stir welded 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 39-42.
    [10]LI Zhanming, ZHU Youli, WANG Kan, Wang Yong. Analysis of strengthening mechanism of ultrasonic impact treatment of 2A12 aluminum alloy weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 55-58.

Catalog

    Article views (736) PDF downloads (34) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return