Advanced Search
XU Nan, LIANG Qingjin, ZHOU Lu, BAO Yefeng. Enhanced strength and ductility of large-load and low-speed friction stir welded T2 copper joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 63-66. DOI: 10.12073/j.hjxb.2018390299
Citation: XU Nan, LIANG Qingjin, ZHOU Lu, BAO Yefeng. Enhanced strength and ductility of large-load and low-speed friction stir welded T2 copper joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 63-66. DOI: 10.12073/j.hjxb.2018390299

Enhanced strength and ductility of large-load and low-speed friction stir welded T2 copper joint

More Information
  • Received Date: June 01, 2017
  • T2 copper plates with a thickness of 2 mm were successfully joined by large-load and low-speed friction stir welding. Microstructures and mechanical properties of welding joints were investigated by optical microscopy, scanning/transmission electron microscopy, electron backscatter diffraction, microhardness measurement and tensile testing. The results showed that the thermal cycle was significantly improved in the stir zone, inhibiting the joint softening degree, while heat affected zone was eliminated as well. The stir zone consisted of the ultra-refined grain structures with abundant twin boundaries. As a result, the ultimate tensile strength and elongation were respectively enhanced by 94 % and 69 % compared with those of the base metal. This work provides a simple and effective method to enhance the strength and ductility of friction stir welded copper joints.
  • Mishra R S, Ma Z Y. Friction stir welding and processing[J]. Materials Science & Engineering R, 2005, 50(1): 1 ? 78.
    Khodaverdizadeh H, Mahmoudi A, Heidarzadeh A, et al. Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints[J]. Materials & Design, 2012, 35(11): 330 ? 334.
    Nagabharam P, Rao D S, Kumar J M, et al. Investigation of Mechanical Properties of Friction Stir Welded pure Copper Plates[J]. Materials Today: Proceedings, 2018, 5(1): 1264 ? 1270.
    Xue P, Xiao B L, Zhang Q, et al. Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling[J]. Scripta Materialia, 2011, 64(11): 1051 ? 1054.
    Xu N, Ueji R, Morisada Y, et al. Modification of mechanical properties of friction stir welded Cu joint by additional liquid CO 2 cooling[J]. Materials & Design, 2014, 56(4): 20 ? 25.
    Xu N, Ueji R, Fujii H. Dynamic and static change of grain size and texture of copper during friction stir welding[J]. Journal of Materials Processing Technology, 2016, 232: 90 ? 99.
    Humphreys F J, Hatherly M, Recrystallization and related annealing phenomena, 2nd ed.[M], Elsevier, Oxford, U.K, 2004.
    Huang K, Logé R E. A review of dynamic recrystallization phenomena in metallic materials[J]. Materials & Design, 2016, 111: 548 ? 574.
    Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale[J]. Science, 2009, 324(5925): 349 ? 52.
    An X H, Wu S D, Zhang Z F, et al. Enhanced strength-ductility synergy in nanostructured Cu and Cu-Al alloys processed by high-pressure torsion and subsequent annealing[J]. Scripta Materialia, 2011, 66(5): 227 ? 230.
    许 楠, 包晔峰, 宋亓宁. H70黄铜冷源辅助搅拌摩擦焊接头微观组织和力学性能分析[J]. 焊接学报, 2018, 39(7): 93 ? 96
    Xu N, Bao Y F, Song Q N. Research on microstructure and mechanical properties of cold source assisted friction stir welded H70 brass joint[J]. Transactions of the China Welding Institute, 2018, 39(7): 93 ? 96
  • Related Articles

    [1]DAI Xiang, SHI Lei, WU Chuansong, JIANG Yuanning, GAO Song, FU Li. Microstructure and mechanical properties of 2195-T6 Al–Li alloy joint prepared by friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 25-34. DOI: 10.12073/j.hjxb.20210524002
    [2]LIU Huijie, GAO Yisong, ZHANG Quansheng, ZHAO Huihui. Microstructure and mechanical properties of friction stir welded joint of 2A14-T4 aluminum alloy thick plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 20-24, 42. DOI: 10.12073/j.hjxb.20210615001
    [3]ZHOU Li, ZHANG Renxiao, SHU Fengyuan, HUANG Yongxian, FENG Jicai. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 80-84. DOI: 10.12073/j.hjxb.2019400076
    [4]DING Hao1, BAO Yumei1, ZHANG Ruizhi1, CHAI Guozhong1, YANG Jianguo2. Study on welding strength and defect assessment of the T2 copper-45 steel dissimilar material[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 43-46. DOI: 10.12073/j.hjxb.2018390119
    [5]LI Jingyong, NI Lianghua, JIN Xin. Continuous drive friction welding procedures of TC4/T2 and microstructure and performance of dissimilar metal joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 115-118.
    [6]CAO Rui, FENG Zhen, CHEN Jianhong, JING Min. Microstructure, bonding mechanism and corrosion property of titanium TA2/copper T2 welded joint by cold metal transfer technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(1): 39-42.
    [7]ZHANG Chengcong, CHANG Baohua, TAO Jun, ZHANG Tiancang. Influence factors of dynamic recrystallization of 7050 aluminium alloy friction stir weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (8): 89-92.
    [8]LI Xiawei, ZHANG Datong, QIU Cheng, ZHANG Wen. Effect of processing parameters on microstructure and mechanical properties of pure copper joints made by friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 93-96.
    [9]LIU Xiao-wen, MU Yao-zhao, YANG Ning-ning, YAN Jun-hui. Research on friction stir welding technology of T2-H62[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (9): 5-8.
    [10]LIU Xiao-wen, YAN Jun-hui, XUE Chao-gai, DUAN Li-yu. Microstructure and mechanical properties of friction stir welded copper plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 47-50.
  • Cited by

    Periodical cited type(22)

    1. 顾苏怡,闵娜,詹恒辉. ZL101/6061铝合金搅拌摩擦焊接头组织及性能研究. 兵器材料科学与工程. 2024(05): 39-44 .
    2. 鲁克锋,殷凤仕,王文宇,滕涛,樊世冲,刘亚凡,王鸿琪,朱建,任智强. 铝合金搅拌摩擦焊接头缺陷及焊件结构问题控制策略的研究进展. 表面技术. 2023(07): 55-79 .
    3. 李充,田亚林,齐振国,王崴,杨彦龙,王依敬. 6082-T6铝合金无减薄搅拌摩擦焊接头组织与性能. 焊接学报. 2022(06): 102-107+119 . 本站查看
    4. 杨新岐,元惠新,孙转平,闫新中,赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能. 材料工程. 2022(07): 128-138 .
    5. 付文侦,贺地求,王海军,赖瑞林. 静止轴肩搅拌摩擦焊技术研究现状. 热加工工艺. 2022(15): 7-13 .
    6. 张军,王稳,王健,金涛涛,田志鹏. 静轴肩摩擦搅拌焊温度场仿真分析与参数优化. 中国机械工程. 2022(17): 2115-2124 .
    7. 朱志,郑森木,欧晓琴,余超,王向东,宋海滨,唐帅,苏乂南. 2219铝合金机器人静轴肩搅拌摩擦焊工艺研究. 航天制造技术. 2022(05): 25-29 .
    8. 祝宗煌,左立生,李泽阳,左敦稳. 一种搅拌头轴肩临界值的计算方法. 机械制造与自动化. 2021(01): 66-69 .
    9. 贺地求,刘朋,王海军,王东曜,赖瑞林. 2219-T6静轴肩辅助搅拌摩擦焊组织与性能分析. 湖南大学学报(自然科学版). 2021(08): 11-18 .
    10. 宋刚,程继文,刘振夫. 基于“热导拘束+局部变形强化”的铝合金焊轧复合成形方法. 机械工程学报. 2020(08): 85-91 .
    11. 牛海侠,朱松波,张琼,李蕾. A357铝合金的半固态触变压缩力学行为研究. 黄河科技学院学报. 2020(05): 41-46 .
    12. 褚强,郝思洁,Devang Sejani,Vivek Patel,李文亚. 静止轴肩搅拌摩擦焊接研究进展及展望. 电焊机. 2020(09): 44-52 .
    13. 姜月,柴玮,刘家伦,朱浩,王军. 7075铝合金搅拌摩擦焊接头变形行为及等效模型. 热加工工艺. 2019(09): 215-219 .
    14. 孙舒蕾,张会杰,赵晟伟,谢胜楠,吕洋. 搅拌摩擦焊焊缝表面凹陷现象控制方法研究现状. 精密成形工程. 2019(03): 138-143 .
    15. 郝云飞,马建波,毕煌圣,李超,王国庆. 铝合金T形接头静止轴肩搅拌摩擦焊接及组织性能分析. 焊接学报. 2019(07): 48-54+163 . 本站查看
    16. 曾申波,陈高强,张弓,史清宇. T形接头角接静轴肩搅拌摩擦焊三维流动特征. 焊接学报. 2019(12): 1-5+161 . 本站查看
    17. 王瑾,李送斌,张妍,陆艺. 焊接工艺参数对6061-T6铝合金静止轴肩搅拌摩擦焊组织及力学性能的影响. 焊接. 2019(11): 33-38+67 .
    18. 张铁浩,刘雪松,邢艳双. 搅拌摩擦焊修复ZL210铸造铝合金组织与性能分析. 焊接学报. 2018(04): 115-118+134 . 本站查看
    19. 李丰,党鹏飞,刘雪松. 基于不旋转轴肩的铝镁异种材料搅拌摩擦焊. 焊接学报. 2018(05): 55-58+131 . 本站查看
    20. 张华,赵常宇,林三宝,石功奇. 7050-T7451铝合金静轴肩搅拌摩擦焊接头组织与性能研究. 焊接. 2018(09): 5-9+65 .
    21. 李金全,刘会杰. 2219-T6铝合金静止轴肩搅拌摩擦焊接工艺及接头组织性能. 航天制造技术. 2017(06): 1-6+11 .
    22. 王敏,张会杰,张骁,于涛,杨广新. 一种新型零减薄搅拌摩擦焊工艺. 焊接学报. 2016(10): 37-40+131 . 本站查看

    Other cited types(15)

Catalog

    Article views (567) PDF downloads (2) Cited by(37)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return