Advanced Search
XIAO Lei, FAN Ding, HUANG Jiankang, WANG Xinxin. Numerical simulation of TIG welding arc with extra high-frequency longitudinal magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 66-70.
Citation: XIAO Lei, FAN Ding, HUANG Jiankang, WANG Xinxin. Numerical simulation of TIG welding arc with extra high-frequency longitudinal magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 66-70.

Numerical simulation of TIG welding arc with extra high-frequency longitudinal magnetic field

More Information
  • Received Date: June 16, 2015
  • A three-dimensional (3D) numerical analysis model of tungsten inert gas welding arc with extra high-frequency longitudinal magnetic field was developed based on the local thermodynamic equilibrium assumption. With this method, the temperature field,velocity field and pressure field of arc plasma were investigated by solving the Maxwell equations, continuity equation, momentum conservation equation and the energy conservation equation. Combined with Faraday's law of electromagnetic induction, electromagnetic induction effect of extra high-frequency longitudinal magnetic field was taken into account. The mechanism of arc contraction in extra high-frequency longitudinal magnetic field was clarified successfully. Simulation results showed that extra high-frequency longitudinal magnetic field inducted circular electric field, it produced circular current, which interacted with the magnetic field to generate radial lorenz force, the arc contracted after all.
  • Chen Tang, Zhang Xiaoning, Bai Bing, et al. Numerical study of DC argon arc with axial magnetic fields[J]. Plasma Chem Plasma Process, 2015, 35(1):61-74.
    白 冰. 耦合电极的磁分散电弧等离子体的数值模拟研究[D]. 北京:中国科学技术大学, 2012.
    Yin Xianqing, Gou Jianjun, Zhang Jianxun, et al. Numerical study of arc plasmas and weld pools for GTAW with applied axial magnetic fields[J]. Journal of Physics D:Applied Physics, 2012, 45, 285203.
    寇 婵. 纵向磁场频率对TIG焊电弧特性的影响[D]. 沈阳:沈阳工业大学, 2015.
    常云龙, 杨 旭, 李大用, 等. 外加纵向磁场作用下的TIG焊接电弧[J]. 焊接学报, 2010, 31(4):49-52. Chang Yunlong, Yang Xu, Li Dayong, et al. Arc shapes of TIG welding in a longitudinal magnetic field[J]. Transactions of the China Welding Institution, 2010, 31(4):49-52.
    Wang Lijun, Jia Shenli, Shi Zongqian, et al. Simulation research of magnetic constriction effect and controlling by axial magnetic field of vacuum arc[J]. Plasma Science & Technology, 2005,7(1):2687-2692.
  • Related Articles

    [1]LEI Zheng, ZHU Zongtao, LI Yuanxing, CHEN Hui. Numerical simulation of TIG arc characteristics of hollow tungsten electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 9-14, 27. DOI: 10.12073/j.hjxb.20210131003
    [2]LIU Zhengjun, LI Yuhang, SU Yunhai. Numerical simulation of heat transfer and fluid flow for arc plasma in gas tungsten arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 120-125. DOI: 10.12073/j.hjxb.2019400138
    [3]WANG Lin, GAO Jinqiang, LI Yan. Numerical simulation of external magnetic field for suppressing humping bead in high speed GMAW process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 109-112,118.
    [4]YANG Dongqing, LI Dayong, ZHANG Guangjun. Numeral simulation of root fusion in double-sided TIG backing welding of thick plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 13-16.
    [5]ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36.
    [6]LI Jun, ZHANG Wenfeng, ZHENG Yansong, LOU Haoyue. Numerical simulation of longitudinal plastic strain field in thin-plate weldment of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 4-8.
    [7]HONG Bo, MA Jinhai, LI Xiangwen, LI Lin. Numerical simulation on transverse magnetic field of magnetic control arc sensor for submerged arc welding by ANSYS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 87-90.
    [8]CHANG Yunlong, YANG Xun, LI Dayong, LI Duo. Arc shapes of TIG welding in a longitudinal magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 49-52.
    [9]ZHANG Guangjun, ZHAO Linlin, LENG Xuesong. Numerical simulation on weld formation of twin-electrode GTAW welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 29-31.
    [10]LEI Yu-cheng, YU Wen-xia, LI Cai-hui, CHENG Xiao-nong. Numerical simulation of molten pool temperature field for TIG welding of pure copper without preheating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 1-4.
  • Cited by

    Periodical cited type(11)

    1. 刘自刚,梅亚泽,张建峰,唐海鸿,陈亮. 深熔TIG焊研究现状与展望. 热加工工艺. 2023(01): 6-11 .
    2. 杜茵茵,陈克选,陈彦强,董军强,陈鹏. 基于RLC串联谐振的GMAW磁控电源电流波形实现方法. 热加工工艺. 2023(03): 120-123+131 .
    3. 李德全,樊丁,黄健康,姚兴龙. 直流磁场作用下铜蒸气对电弧特性的影响. 焊接学报. 2023(04): 71-76+133 . 本站查看
    4. 莫春立,邓德胜,赵磊. 外加纵向交变磁场下的TIG焊电弧数值模拟. 材料导报. 2023(S1): 441-444 .
    5. 陈克选,杜茵茵,陈彦强. 交变磁控电源的设计与仿真. 电焊机. 2022(03): 93-98 .
    6. 程葳蕤,唐方,杨成明,李湘文,沈亚仁. 纵向磁控钨极惰性气体保护焊电弧运动轨迹行为研究. 湖南电力. 2022(05): 42-47 .
    7. 赵磊,莫春立,刘春宇,常云龙. 纵向交变磁场及脉冲电流下TIG焊接电弧模拟. 热加工工艺. 2021(13): 119-123+132 .
    8. 张晓鸿,司中祺,范翼飞,文远华,张万春. 磁场作用下的TIG电弧行为分析. 宇航材料工艺. 2021(03): 44-48 .
    9. 周祥曼,刘练,陈永清,袁有录,田启华,杜义贤,何青松,付君健. 外加变位磁场作用GTAW焊接电弧的数值模拟. 三峡大学学报(自然科学版). 2021(05): 101-106+112 .
    10. 谢岳良,史传伟,张元彬,王庭庭. 外加磁场作用下焊接方法的研究进展. 电焊机. 2018(05): 118-121 .
    11. 肖磊,樊丁,黄健康. 交变磁场作用下的GTAW非稳态电弧数值模拟. 机械工程学报. 2018(16): 79-85 .

    Other cited types(22)

Catalog

    Article views (298) PDF downloads (197) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return