Advanced Search
LIU Zhenlei, CUI Hutao, JI Shude, XU Minqiang, MENG Xiangchen. Effect of peak temperature on formation of 6061Al/AZ31BMg dissimilar FSW joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 23-26.
Citation: LIU Zhenlei, CUI Hutao, JI Shude, XU Minqiang, MENG Xiangchen. Effect of peak temperature on formation of 6061Al/AZ31BMg dissimilar FSW joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 23-26.

Effect of peak temperature on formation of 6061Al/AZ31BMg dissimilar FSW joint

More Information
  • Received Date: March 11, 2016
  • Choosing 6061-T6 Al alloy and AZ31B Mg alloy as research objects, temperature field during dissimilar friction stir welding (FSW) process was simulated by the Abaqus software. Effect of welding peak temperature in stir zone on weld surface formation was mainly discussed under tool offset on Mg alloy plate. When the welding peak temperature is higher than Al-Mg eutectic temperature, adhesion phenomenon appears near the pin root, which is more serious under lower welding speed owing to the increase of peak temperature. With increasing welding speed, crack in weld surface is more easily avoided. At the rotational velocity of 1200r/min and the welding speed of 40mm/min, 6061Al/AZ31BMg dissimilar FSW joint with excellent-formation surface is successfully attained.
  • Mishra R S, Ma Z Y. Friction stir welding and processing[J]. Materials Science and Engineering: R, 2005, 50: 1-78.
    姬书得, 孟祥晨, 黄永宪, 等. 搅拌头旋转频率对静止轴肩搅拌摩擦焊接头力学性能的影响规律[J]. 焊接学报, 2015,36(1): 51-54. Ji Shude, Meng Xiangchen, Huang Yongxian, et al. Effect of rotational velocity of tool on mechanical propertiesof stationary shoulder friction stir welding[J]. Transactions of the China Welding Institution, 2015,36(1): 51-54.
    Mironov S, Onuma T, Sato Y S, et al. Microstructure evolution during friction-stir welding of AZ31 magnesium alloy[J]. Acta Materialia, 2015, 100: 301-312.
    Somasekharan A C, Murr L E. Microstructures in friction-stir welded dissimilar magnesium alloys and magnesium alloys to 6061-T6 aluminum alloy[J]. Materials Characterization, 2004, 52: 49-64.
    Fu B L, Qin G L, Li F, et al. Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy[J]. Journal of Materials Processing Technology, 2015, 218: 38-47.
    Sato Y S, Park S H C, Michiuchi M, et al. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys[J]. Scripta Materialia, 2004, 50(9): 1233-1236.
    李 达, 孙明辉, 崔占全. 工艺参数对铝镁搅拌摩擦焊焊缝成形质量的影响[J]. 焊接学报, 2011, 32(8): 97-100. Li Da, Sun Minghui, Cui Zhanquan. Effect of parameters on friction stir welding joint of 7075Al and AZ31BMg[J]. Transactions of the China Welding Institution, 2011, 32(8): 97-100.
    Chen Y C, Nakata K. Friction stir lap joining aluminum and Magnesium alloys[J]. Scripta Materialia, 2008, 58: 433-436.
    王快社, 王训宏, 沈 洋, 等. MB3镁合金与1060铝合金搅拌摩擦焊接研究[J]. 热加工工艺, 2005(9): 29-31. Wang Kuaishe, Wang Xunhong, Shen Yang, et al. Research on friction stir welding of MB3 magnesium alloy of 1060 aluminum alloy[J]. Hot Working Technology, 2005(9): 29-31.
    Riahi M, Nazari H. Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55: 143-152.
    Zhang C Y, Ma G H, Nie J, et al. Numerical simulation of AZ31B magnesium alloy in DE-GMAW welding process[J]. The International Journal of Advanced Manufacturing Technology, 2015, 78: 1259-1264.
    李红克, 史清宇, 赵海燕, 等. 热量自适应搅拌摩擦焊热源模型[J]. 焊接学报, 2006, 27(11): 81-85. Li Hongke, Shi Qingyu, Zhao Haiyan, et al. Auto-adapting heat source model for numerical analysis of friction stir welding[J]. Transactions of the China Welding Institution, 2006, 27(11): 81-85.
    Yan J C, Xu Z W, Li Z Y, et al. Microstructure characteristics and performance of dissimilar welds between magnesium alloy and aluminum formed by friction stirring[J]. Scripta Materialia, 2005, 53(5): 585-589.
  • Related Articles

    [1]GAO Yanfeng, XIAO Jianhua. Curved weld-seam tracking based on information fusion of welding gun inclinations[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 15-18.
    [2]HONG Bo, YAN Junguang, YANG Jiawang, LIU Xiang. A capacitive sensor for automatic weld seam tracking[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 55-58.
    [3]QIN Tao, ZHANG Ke, DENG Jingyu, JIN Xin. Algorithm of extracting feature lines in welding seam image based on improved least-square method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 33-36.
    [4]XIAO Xinyuan, SHI Yonghua, WANG Guorong, Li Hexi. Robotic underwater weld seam tracking based on visual sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 33-36.
    [5]HONG Bo, WEI Fuli, LAI Xin, PAN Jiluan, YIN Li. A magnetic-control arc sensor for seam-tracking[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 1-4,8.
    [6]YIN Yi, HONG Bo, ZHANG Chen-shu, QU Yue-bo. Seam tracking system based on photoelectric sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 93-98.
    [7]CAD Hong-ming, FAN Chong-jian, WU Lin. Weld seam tracking based on micro-beam plasma arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 80-83.
    [8]GAO Xiang-dong, LUO Xi-zhu, S. J. Na. An image centroid method for seam tracking in gas tungsten arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 15-18.
    [9]XIONG Zhen-yu, ZHANG Hua, PAN Ji-luan. Seam tracking for space position based on rotating arc sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (5): 37-41.
    [10]Wang Xiaodong, Liu Hongqian, Wu Wei. A New Type of Laser Distance Scanner for Seam Tracking[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1996, (3): 183-187.

Catalog

    Article views (357) PDF downloads (353) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return