Advanced Search
LIU Chengcai, LIU Chengdan, LIU Weiwei, HE Jingshan. Numerical simulation of keyhole evolution for 2219 aluminum alloy electron beam spot welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 115-118.
Citation: LIU Chengcai, LIU Chengdan, LIU Weiwei, HE Jingshan. Numerical simulation of keyhole evolution for 2219 aluminum alloy electron beam spot welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 115-118.

Numerical simulation of keyhole evolution for 2219 aluminum alloy electron beam spot welding process

More Information
  • Received Date: December 07, 2014
  • In this paper, a two-dimensional coupled mathematical model for heat transfer and flow of 2219 aluminum alloy electron beam welding pool was established based on finite volume method in Fluent software. In the model, the effects of surface tension, Marangoni shear force, hydrostatic pressure of fluid and recoil pressure of metal vapor were considered. In addition, formation and evolution of keyhole was traced by VOF (Volume of Fluid) algorithm. The results showed that the primary reason for the deepening of keyhole was the combination of recoil pressure's drilling and vortex's transportation. The decreasing heat source's power density caused the decreasing drilling velocity of recoil pressure. In addition, aluminum alloy spot welding experiment indicated that the numerical simulation result agreed well with the actual one.
  • 周琦, 刘方军. 电子束深熔焊熔质密度分布与熔池流动行为[J]. 焊接学报, 2001, 22(5):17-20. Zhou Qi, Liu Fangjun. Behaviors of element's density distribution and melting metal flow in electron beam deep penetration welding[J]. Transactions of the China Welding Institution, 2001, 22(5):17-20.
    张亚斌. 基于Fluent的铝合金电子束深熔焊三维流场数值模拟[D]. 哈尔滨:哈尔滨工业大学, 2007.
    石铭霄. 钛合金电子束深熔焊传热传质及质量控制研究[D]. 哈尔滨:哈尔滨工业大学, 2013.
    Won-Ik Cho, Suck-Joo Na, Claus Thomy, et al. Numerical simulation of molten pool dynamics in high power disk laser welding[J]. Journal of Materials Processing Technology, 2012, 212:262-275.
    占小红, 米高阳, 陶汪, 等. 薄板铝合金激光深熔焊熔池流动数值模拟[J]. 焊接学报, 2013, 34(10):31-34. Zhan Xiaohong, Mi Gaoyang, Tao Wang, et al. Molten flow simulation of laser deep penetration welding of aluminum alloys[J]. Transactions of the China Welding Institution, 2013, 34(10):31-34.
    张涛, 武传松. 穿孔等离子弧焊接热场和流场的数值模拟[J]. 焊接学报, 2011, 32(7):87-90. Zhang Tao, Wu Chuansong.Numerical simulation of temperature field and fluid flow in keyhole plasma arc welding[J]. Transactions of the China Welding Institution, 2011, 32(7):87-90.
    吴甦, 赵海燕, 王煜, 等. 高能束焊接数值模拟中的新型热源模型[J]. 焊接学报, 2004, 25(1):91-94. Wu Su, Zhao Haiyan, Wang Yu, et al. A new heat source model in numerical simulation of high energy beam welding[J]. Transactions of the China Welding Institution, 2004, 25(1):91-94.
  • Related Articles

    [1]GU Yufen, BIAN Chunhong, LI Chunkai, SHI Yu. Effect of different component active fluxes on surface tension of weld pool in stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 48-53. DOI: 10.12073/j.hjxb.20190911001
    [2]LI Liqun, HAO Yu, PENG Jin. Effect of surface tension on flow in laser deep penetration welding molten pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 13-19. DOI: 10.12073/j.hjxb.2019400034
    [3]ZHANG Yong, SUN Linlin, TANG Jiacheng, TANG Mingyuan. Effect on liquid metal surface tension and TIG weld bead properties of Q235 steel by high silicon flyash[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 92-96. DOI: 10.12073/j.hjxb.2018390130
    [4]SHEN Yanxu, LIN Tiesong, HE Peng, ZHU Ming, ZHANG Zhihui, LU Fengjiao. Sn behavior over Si3N4/2024Al composite surface in wetting test of Sn-Zn alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (7): 59-62.
    [5]LIU Mnig-zhi, ZHANG Guang-xian, Nie Li-li, Zhang Zhao-shan. Dynamic process of surface tension transformation (STT)[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (5): 60-64,80.
    [6]ZHANG Guang-xian, ZHOU Zeng-da, CHEN Ren-fu, YIN Hai, LIU Ming-zhi. Research on simulation for surface tension transformation in CO2 arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (4): 68-72.
    [7]ZHANG Guang-xian, ZOU Zeng-da, YIN Hai, LI si-hai, Li Zhong-you. Surface tension transformation in CO2 arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 80-84.
    [8]WANG Xin-zhi, CHEN Wu-zhu, ZHAO Zi-xiang. Self-equalizing Transition between Electro-magnetic Force and Surface Tension in Short Circuit CO2 Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 24-28.
    [9]LEI Yong-ping, SHI Yao-wu, Hidekazu Murakawa. Infuence of Surface Tension and Alloy Vaporation on Heating Surface Temperature during Laser Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 13-16.
    [10]Meng Qingsen, Wang Bao, Lu Wenxiong. Effect of flux materials on surface tension of drops of electrodes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (2): 63-68.

Catalog

    Article views (1081) PDF downloads (420) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return