Advanced Search
DONG Wenchao, LU Shanping, LI Dianzhong. Effect of welding sequence on welding distortion of large-sized thin armor steel structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 43-46,50.
Citation: DONG Wenchao, LU Shanping, LI Dianzhong. Effect of welding sequence on welding distortion of large-sized thin armor steel structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 43-46,50.

Effect of welding sequence on welding distortion of large-sized thin armor steel structure

More Information
  • Received Date: December 18, 2013
  • The finite element model for welding of a large-sized thin armor steel structure was developed based on the finite element software SYSWELD. The influence of welding sequence on the distortion of the thin plate structure was investigated by using Local-Global method. Using heat source fitting tool in SYSWELD, the double ellipsoid heat source models which were suitable for the site welding process were established through comparing the weld cross-sections of calculation and experiment. The welding procedures of both T-joint and butt joint were analyzed by the thermal elastic-plastic finite element method. The local plastic strain and the joint stiffness were obtained. Furthermore, the distortion behaviors of the thin plate structure in different welding sequences were simulated. The results show that the welding distortion of the medium plate is severe, and the maximum deformation is 9.6 mm. The calculated results agree well with the experimental ones. The distortion of the thin plates is improved effectively by using the optimized welding sequence. The maximum deformation is reduced by 75%.
  • 闫德俊, 刘雪松, 周广涛, 等. 大型底板结构焊接顺序控制变形数值分析[J]. 焊接学报, 2009, 30(6): 55-58. Yan Dejun, Liu Xuesong, Zhou Gugangtao, et al. Numerical analysis on optimizing welding sequence of large-sized bottom structure for controlling welding distortion[J]. Transactions of the China Welding Institution, 2009, 30(6): 55-58.
    Dong P. Residual stresses and distortions in welded structures: a perspective for engineering applications[J]. Science and Technology of Welding and Joining, 2005, 10(4): 389-398.
    Yi H J, Kim J Y, Yoon J H, et al. Investigations on welding residual stress and distortion in a cylinder assembly by means of a 3D finite element method and experiments[J]. Journal of Mechanical Science and Technology, 2011, 25(12): 3185-3193.
    汪建华, 陆 皓, 魏良武. 固有应变有限元法预测焊接变形理论及其应用[J]. 焊接学报, 2002, 23(6): 36-40.Wang Jianhua, Lu Hao, Wei Liangwu. Prediction of welding distortions based on theory of inherent strain by FEM and its application[J]. Transactions of the China Welding Institution, 2002, 23(6): 36-40.
    方臣富, 吴文烈, 刘 川, 等. 基于固有应变法预测双丝CO2气体保护焊液压支架顶梁变形[J]. 焊接学报, 2013, 34(11): 1-4.Fang Chenfu, Wu Wenlie, Liu Chuan, et al. Welding deformation of top beam structure in hydraulic support by CO2 double-wire gas shield welding based on inherent strain method[J]. Transactions of the China Welding Institution, 2013, 34(11): 1-4.
    Tsirkas S A, Papanikos P, Pericleous K, et al. Evaluation of distortions in laser welded shipbuilding parts using local-global finite element approach[J]. Science and Technology of Welding and Joining, 2003, 8(2): 79-88.
    Bachorski A, Painter M J, Smailes A J, et al. Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach[J]. Journal of Materials Processing Technology, 1999, 93(8): 405-409.
    田锡唐. 焊接结构[M]. 北京:机械工业出版社, 1982.
  • Related Articles

    [1]LI Meiyan, HAN Bin, CAI Chunbo, WANG Yong, SONG Lixin. Numerical simulation on temperature and stress fields of laser cladded Ni-based coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 25-28,32.
    [2]WANG Ping, WANG Qiang, LIU Xuesong, FANG Hongyuan. Welding sequence optimization for high-speed rail floor based on FEM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (8): 45-48.
    [3]LU Xuedong, WU Mingfang, CENG Yue, WANG Huan, SHEN Songpei. Numerical simuation of welding residual deformation in welded joints of marine steel plate by FEM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 45-48.
    [4]LI Chaowen, WANG Yong, LI Liying, HAN Tao. Three-dimensional dynamic FEM simulation of temperature distribution of T-joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (8): 33-36.
    [5]HU Guiming, ZHOU Changyu, ZHANG Guodong, CHEN Cheng, LEI Na. Finite element simulation on the effect of welding residual stress on the metal dusting corrosion of welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 42-46.
    [6]DONG Xiaoqiang, ZHANG Hongbing, LIU Yong, ZHANG Zhongli. Temperature field and stress field in arc sprayed coating of steel mold[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (11): 61-64.
    [7]ZHANG Hong-wu, ZHANG Zhao, CHEN Jin-tao. Finite element analysis of friction stir welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (9): 13-18.
    [8]JIA Fa yong, HUO Li xing, ZHANG Yu feng, YANG Xin qi. Key influence factors in hot spot stress FEM analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 27-30.
    [9]LIZhuo ran, CAOJian, FENGJi cai. FEM analysis of thermal/residual stresses in brazing TiB2 cermet/TiAl joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 1-4.
    [10]LI Jie, Zhang Yu-feng, HUO Li-xing, WANG Dong-po. FEM Analysis of Beam-to-Column Welded Connection Under the Simulating Earthquake Cyclic Load[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 15-18.
  • Cited by

    Periodical cited type(25)

    1. 韩泽平,曹丽杰. AA2195-AZ31B搅拌摩擦焊温度与残余应力场的数值模拟. 兵器材料科学与工程. 2024(02): 164-170 .
    2. 卢晓红,乔金辉,周宇,马冲,隋国川,孙卓. 搅拌摩擦焊温度场研究进展. 吉林大学学报(工学版). 2023(01): 1-17 .
    3. 陈兴惠,张洪申. 基于主成分及灰色关联度分析的5083铝合金FSW接头工艺参数优化. 焊接学报. 2023(05): 62-69+132-133 . 本站查看
    4. 王良,何晓晗,张梦瑶,胡议文,周培山. 中厚板镁铝异种合金激光-MIG复合焊应力与变形. 应用激光. 2023(09): 56-67 .
    5. 冀伟,张鹏,姜红. 波形钢腹板梁T形接头焊接温度场分析. 焊接. 2022(06): 8-14 .
    6. 马英磊,郑洋,张建军,陈勇,景国玺. 铝/镁搅拌摩擦焊异质接头热-力场仿真研究. 焊接技术. 2021(03): 6-10+105 .
    7. 庞嘉尧,余乐,杨宏. 搅拌摩擦焊中铝合金板材温度场的研究现状. 机械管理开发. 2021(06): 277-280 .
    8. 王耀. 5083铝合金搅拌摩擦焊接头组织及力学性能研究. 山西冶金. 2021(04): 12-15 .
    9. 张渝,杨霖. 铝合金差厚板搅拌摩擦焊温度场及残余应力分析. 热加工工艺. 2020(01): 142-147 .
    10. 张璐霞,林乃明,邹娇娟,谢瑞珍. 铝合金搅拌摩擦焊的研究现状. 热加工工艺. 2020(03): 1-6 .
    11. 苗臣怀,曹丽杰,殷凯,王楠楠. 5052铝合金搅拌摩擦焊残余应力场数值模拟研究. 轻工机械. 2020(01): 46-50 .
    12. 莫淑娴,朱浩,马泽铭,张二龙,王军. 铝/钢异种金属搅拌摩擦焊接头数值模拟. 兵器材料科学与工程. 2020(03): 13-18 .
    13. 柴鹏,左莹莹,陈克鹏,齐铂金,姬书得. 回填式搅拌摩擦点焊过程温度场的数值模拟. 航空制造技术. 2020(11): 34-40 .
    14. 王耀. 铝合金搅拌摩擦焊及材料改性研究进展. 山西冶金. 2020(05): 66-68 .
    15. 刘景麟,吕赞,陈克鹏,杭子轩,崔璨. 静止轴肩对FSW温度与应力影响的数值模拟. 精密成形工程. 2019(03): 144-149 .
    16. 万胜强,吴运新,龚海,聂林. 2219铝合金搅拌摩擦焊温度与残余应力热力耦合模拟. 热加工工艺. 2019(13): 159-163 .
    17. 张亮亮,王希靖,李德福,杨小娟. 基于DEFORM-3D的FSW温度场及流场数值模拟. 兰州理工大学学报. 2019(06): 6-10 .
    18. 李翔,李积元,王金辉. 基于热源模型7075铝合金搅拌摩擦焊接机理分析与研究. 青海大学学报. 2018(03): 56-63 .
    19. 姜月,朱浩,刘家伦,赵熠朋,王军. 7075铝合金搅拌摩擦焊工艺对接头沉淀相析出行为影响. 中国有色金属学报. 2018(11): 2191-2198 .
    20. 张昭,葛芃. 焊后热处理对FSW和TIG焊残余应力影响的数值模拟. 兵器材料科学与工程. 2017(01): 1-7 .
    21. 乔伟超,陈重毅,麻永林,邢淑清,白庆伟. 分层加载对Cr-Ni-Mo系钢薄板焊接温度场的影响. 内蒙古科技大学学报. 2017(04): 355-360 .
    22. 李翔,李积元. 基于热源模型7050铝合金搅拌摩擦焊接机理分析与研究. 大众科技. 2017(07): 67-69+73 .
    23. 崔超,吴志生,柴斐,范祎欣. 5A06铝合金搅拌摩擦焊温度场数值模拟. 焊接技术. 2017(03): 12-15+97-98 .
    24. 黎俊初,覃雯,刘大海,谢吉林. 时效温度对7075铝合金搅拌摩擦焊构件焊缝组织及性能的影响. 锻压技术. 2016(07): 91-96 .
    25. 李志伟,樊晓力. 基于移动坐标系的汽车轮辋FSW传热模型构建与分析. 特种铸造及有色合金. 2016(01): 16-19 .

    Other cited types(28)

Catalog

    Article views (535) PDF downloads (176) Cited by(53)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return