Citation: | YAN Wentao, LI Xiaoyan, LI Hui, SUN Jiantong. Using dynamic induction heating to inhibit martensite structure formed in heat-affected zone of U71Mn steel rail aftersurface welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 97-100,108. |
[1] | YUAN Wei, HU Mengwei, WANG Xiao, ZHANG Xi, LYU Qibing, CHEN Hui, CHEN Jingqing. Numerical simulation and technology of electric induction heating for welded joints of rail[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 79-89. DOI: 10.12073/j.hjxb.20231009004 |
[2] | TAN Jinhong, ZHANG Xinping, CAO Shanshan, WANG Peng, ZENG Qingrui, CHEN Bin. Investigation on microstructure and properties of U71Mn steel joints by Flash-Friction hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 62-68. DOI: 10.12073/j.hjxb.20240117002 |
[3] | ZHANG Chao, CUI Lei, LIU Yongchang, WANG Dongpo, ZHOU Mengbing. Microstructure and mechanical properties of friction stir welded joints of reduced activation ferritic-martensitic steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 52-57. DOI: 10.12073/j.hjxb.2019400154 |
[4] | ZHANG Jianchao1, QIAO Junnan1, WU Shikai1, LIAO Hongbin2, WANG Xiaoyu2. Microstructure and mechanical properties of fiber laser welded joints of reduced activation ferritic/martensitic CLF-1 steel heavy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 124-128. DOI: 10.12073/j.hjxb.2018390109 |
[5] | ZHOU Yefei, HAN Chao, LIU Ligang, YANG Yulin, YANG Qingxiang. Simulation of tangential process of stress field after hard-face-welding during martensite transformation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 73-76. |
[6] | LEI Yucheng, HAN Mingjuan, ZHU Qiang, JU Xin. Microstructure and hardness of laser welded joint of China low activation martensitic steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 5-8. |
[7] | LEI Yucheng, GU Kangjia, ZHU Qiang, CHEN Xizhang, JU Xin, CHANG Fenghua. Hardness and microstructure of China low activation martensitic steel fusion welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 9-12. |
[8] | WANG Ai-zhen, ZHANG Tai-chao, ZHAO Hong-yan. Study on Elimination of Martensitic Shortness Layer for Dissimilar Steel Weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (4): 58-62. |
[9] | Lu Delin, Li Yanwen, Li Xianjun, Chen Junyi, Zhang Ruibin, Zheng Kui. Effect of lath martensite on toughness in overheated zone of 10Ni5CrMoV and 12Ni2CrMoVA steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (2): 114-120. |
[10] | Zhou Zhaowei, Cai Hongbin, Jiang Conghua. RELATIONSHIP BETWEEN MARTENSITE LAYER AND HYDROGEN-INDUCED CRACKING IN THE WELD BOND OF 9%Ni STEEL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1990, (4): 205-211. |