Advanced Search
WEI Shouzheng, LI Yajiang, WANG Juan, ZHANG Pengfei. Microstructure characteristics of RuTi/1060Al fusion-brazed joint by pulsed gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 63-66.
Citation: WEI Shouzheng, LI Yajiang, WANG Juan, ZHANG Pengfei. Microstructure characteristics of RuTi/1060Al fusion-brazed joint by pulsed gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 63-66.

Microstructure characteristics of RuTi/1060Al fusion-brazed joint by pulsed gas metal arc welding

More Information
  • Received Date: December 19, 2012
  • Pulsed gas metal arc welding of RuTi titanium alloy to 1060 aluminum was conducted. The microstructure in weld zone of RuTi Ti/1060Al joint was examined by scanning electron microscope (SEM) fitted with energy-dispersive spectrometer (EDS). Elemental distribution and precipitated phase in weld zone and transition region on Ti alloy side were analyzed by EDS. The weld zone was composed of α-Al dendrites and eutectic α-Al+Si structures. The eutectic α-Al+Si structures distributed along the boundaries of α-Al dendrites. Striped or block Ti(Al,Si)3 intermetallics appeared in the weld zone. A serrated transition region mainly containing Ti(Al,Si)3 intermetallics was formed between the RuTi titanium alloy and the weld zone. The width of the Ti/Al transition region was less than 10 μm. With the increasing of welding heat input,the Ti/Al transition region presented a rod-like appearance. The heat-affected zone (HAZ) of RuTi titanium alloy consisted of acicular α″ and lath α' martensite. The average microhardness in the HAZ was about 2.16-2.65 GPa.
  • Related Articles

    [1]WANG Ruichao, ZHU Guochong, LI Huijun, LI Runhua. Numerical simulation of heat and mass transfer and molten pool behavior of aluminum alloy by CMT and arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 92-100, 108. DOI: 10.12073/j.hjxb.20231122002
    [2]PENG Jin, XU Hongqiao, WANG Xingxing, LI Shuai, LI Liqun, LONG Weimin, CHEN Benle. Study on the dynamic behavior of molten pool in laser welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 1-7. DOI: 10.12073/j.hjxb.20221220001
    [3]ZHOU Xiangman, FU Zichuan, BAI Xingwang, TIAN Qihua, FANG Dong, FU Junjian, ZHANG Haiou. Numerical simulation of the effect of wire feeding speed on the molten pool flow and weld bead morphology of WAAM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 109-116. DOI: 10.12073/j.hjxb.20220603001
    [4]LI Ruiying, ZHAO Ming, ZHOU Hongyan. Finite element analysis on 3-D molten pool geometry for GTAW based on SYSWELD software[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (4): 41-44.
    [5]WEI Yanhong, WANG Yong, DONG Zhibo, MA Rui, ZHAN Xiaohong. Simulation of equiaxed dendritic growth in molten pool of pure metal with phase-field method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (3): 1-4,8.
    [6]ZHAO Ming, ZHAI Lei, SUN Yongxing. Improvement on numerical analysis precision of surface deformation of molten pool in fully-penetrated GTAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 21-24.
    [7]HE Jingshan, LIU Wei, ZHNG Binggang, WU Qingsheng. Numerical simulation on effect of TIG welding arc on liquid surface of full-penetrated molten pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 10-12.
    [8]ZHAO Ming, WU Chuan-song, ZHAO Peng-cheng. Improvement on numerical simulation precision of GTAW weld pool geometry[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 17-20,28.
    [9]Zheng Wei, Wu Chuansong, Wu lin. Numerical simulation for Transient Behavior of Fluid Flow and Heat Transfer in Pulsed Current TIG Weld Pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (4): 227-231.
    [10]Wu Chuansong, Chen Dinghua, Wu Lin. NUMERICAL SIMULATION OF THE FLUID FLOW AND HEAT TRANSFER IN TIG WELDING MOLTEN POOLS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (4): 263-269.

Catalog

    Article views (245) PDF downloads (98) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return