Advanced Search
LIANG Peng, WEI Yanhong, ZHAN Xiaohong. Weld defect segmentation and extraction of X-ray image based on B-spline curve[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 109-112.
Citation: LIANG Peng, WEI Yanhong, ZHAN Xiaohong. Weld defect segmentation and extraction of X-ray image based on B-spline curve[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 109-112.

Weld defect segmentation and extraction of X-ray image based on B-spline curve

More Information
  • Received Date: May 22, 2011
  • Aiming at the facts that most X-ray digital images have the problem of low contrast, large background fluctuation and complex texture, b-spline curve is used to fit the column gray curves after preprocessing of weld images.The result shows that redundant curve peaks are eliminated and a smooth curve is abtained.Furthermore, curve extreme points are extracted and extreme value point set is modified twice by a fluctuation threshold and a boundary threshold.Finally, the shape and size of defects are revised by mathematical morphology and median filtering.Experiment results shows that this strategy effectively solves the problem of defect extraction caused by the weld seam with complex texture in X-ray image.It is advantageous to realize the automatic extraction of weld defects in X-ray image.
  • Related Articles

    [1]SHAO Jiaxin, DU Dong, ZHU Xinjie, GAO Zhiling, WANG Chen. Weld defect detection of double sides weld based on X-ray digitized image[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 21-24.
    [2]ZOU Yirong, WU Zheming, GUO Guilin, DU Dong. Image processing algorithm for weld seam recognition based on color analyzing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 37-40.
    [3]LIU Xiaogang, XIE Cunxi, ZHANG Changnian, XU Jiayuan. Acqusition and processing of seam image based on reflected arc light[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 73-76.
    [4]ZHAO Xiang-bin, LI Liang-yu, XIA Chang-liang, FU Ling-jian. Image processing of seam tracking system with laser vision[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 42-44,48.
    [5]LI Yuan, XU De, SHEN Yang, TAN Min. A image processing and features extraction method for structured light image of welding seam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 25-30.
    [6]LIU Xi-wen, WANG Guo-rong, SHI Yong-hua. Image processing in welding seam tracking based on single-stripe laser[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 25-28,32.
    [7]LI Ming-li, LIU Zhan-min. Image processing and tracing data collection for welding groove laser detection[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (5): 31-35.
    [8]WANG Qing-xiang, SUN Bing-da, LI Di. Image processing method for recognizing position of welding seam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 59-63.
    [9]GU Chun-yan, ZHANG Li-bin, HU Bao-jian, LIU Chao-ying, HUANG Wei. Application of image processing automatic tracking of CO2 arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (4): 70-72.
    [10]SUN Yi, SUN Hong-yu, BAI Peng, WANG Yu, TIAN Yan-ping. Real-time automatic detection of weld defects in X-ray images[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 115-118,122.

Catalog

    Article views (246) PDF downloads (107) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return