Advanced Search
MENG Lichun, KANG Xu, SUN Yanjun, SUN Kai, SHI Qingyu. Mechanical properties of 7N01 aluminum friction stir welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 90-92,100.
Citation: MENG Lichun, KANG Xu, SUN Yanjun, SUN Kai, SHI Qingyu. Mechanical properties of 7N01 aluminum friction stir welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 90-92,100.

Mechanical properties of 7N01 aluminum friction stir welding joint

More Information
  • Received Date: December 29, 2010
  • Mechanical properties of friction stir welded 7N01 aluminum joint under different welding parameters have been studied in this paper.The tensile test results showed that,with a certain rotational speed and welding speed,the FSW joints could keep at a high strength level of 340 MPa even the plunge depth varied from 0.3 to 1.0 mm.SEM was carried and the FSW joints exhibited mainly dimpled fracture surfaces.Hardness of the joints was also measured.The hardness in retreating side was a little higher than that of advancing side.This result corresponded well with the tensile test result.Fracture occurred at the advancing side in tensile test.
  • Related Articles

    [1]LIN Zhicheng, ZHAO Yunqiang, YAN Dejun, LIU Li, DONG Chunlin. Study on microstructure and mechanical properties of new generation high-magnesium aluminum alloy cross-welded joints by friction stir welding-friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 24-30. DOI: 10.12073/j.hjxb.20220510001
    [2]LIU Huijie, GAO Yisong, ZHANG Quansheng, ZHAO Huihui. Microstructure and mechanical properties of friction stir welded joint of 2A14-T4 aluminum alloy thick plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 20-24, 42. DOI: 10.12073/j.hjxb.20210615001
    [3]WANG Chungui, ZHAO Yunqiang, Deng Jun, Dong Chunlin, You Jiaqing. Microstructure evolution and mechanical properties of robotic friction stir welded joints of 2024-T4 ultra-thin aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 49-54. DOI: 10.12073/j.hjxb.20201208002
    [4]QIAO Junnan, ZOU Jianglin, WU Shikai. Effect of natural aging on microstructure and properties of fiber laser-VPTIG hybrid welding of A7N01 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 70-74. DOI: 10.12073/j.hjxb.2018390016
    [5]ZHU Zongtao, ZHU Quanchao, LI Yuanxing, CHEN Hui. Microstructure and mechanical property of A7N01 aluminum alloy welded by laser-MIG hybrid method with assisting ultrasonic vibration[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 80-84.
    [6]ZHENG Xiaomao, ZHANG Datong, ZHANG Wen, QIU Cheng. Effect of processing parameters on microstructure and mechanical properties of friction stir welded 7A04 aluminum alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 76-80.
    [7]XU Zhongfeng, LU Hao, YU Chun, YANG Yang. Microstructure and mechanical properties of 2219 aluminum alloy refilling friction stir welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 73-76.
    [8]DONG Jihong, TONG Jianhua, GUO Xiaojuan, LUAN Guohong. Microstructure and mechanical properties of friction stir welding joint of 7A05 aluminum alloy thick-sheet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 65-68.
    [9]WANG Chunyan, QU Wenqing, YAO Junshan, ZHAO Haiyun. Microstructures and mechanical properties of friction stir welded 2219-T87 aluminum alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 77-80,84.
    [10]WANG Da-yong, FENG Ji-cai, GUO De-lun, LUAN Guo-hong, GUO He-ping, SUN Cheng-bin. Effect of welding speed on microstructure and mechanical property of high-strength aluminum alloy friction stir weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 71-73.

Catalog

    Article views (219) PDF downloads (80) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return