Advanced Search
YANG Xiuzhi, YU Shengfu, YAO Rungang. Optimization design of twin-wire welding temperature field algorithm procedures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 53-56.
Citation: YANG Xiuzhi, YU Shengfu, YAO Rungang. Optimization design of twin-wire welding temperature field algorithm procedures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 53-56.

Optimization design of twin-wire welding temperature field algorithm procedures

More Information
  • Received Date: June 07, 2009
  • The temperature field of the twin-wire submerged arc welding was analyzed by finite element software ANSYS of secondary development.The calculation and loading of heat of mobile heat source were programmed by ANSYS parametric design language.In particular,by the use of vector,the calculation and loading operation were simplified and the efficiency of simulation was improved.The experiments verify that the algorithm of heat load makes simulation time and calculation reduce,and the algorithm is feasible and efficient.This algorithm can be applied to the thermal calculation and loading of temperature field for multiple wire welding.
  • Related Articles

    [1]XU Zhiwu, LI Zhengwei, FENG Yan, YAN Jiuchun. Microstructure and mechanical properties of Mg/Al friction stir lap welding joint assisted by stationary shoulder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 1-6. DOI: 10.12073/j.hjxb.20170401
    [2]MAO Yuqing, KE Liming, HUANG Bin, LIU Fencheng. Effect of shoulder profile on plastic flow of weld metal in aluminum alloys friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 27-32.
    [3]MAO Yuqing, KE Liming, LIU Fencheng, LIU Qiang. Effect of pin eccentricity on flow behavior of plastic material in friction stir welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 51-56.
    [4]WANG Weibing, LUAN Guohong, ZHANG Kun, ZHAO Huaxia. Fundamental model of plastic material flow in FSW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 71-74.
    [5]WANG Xijing, XU Youwei, ZHANG Liangliang, WEI Wankui. Plastic metal flow characteristic and fracture behaviors of DP600/AZ31 with non-keyhole friction stir spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 57-60,70.
    [6]JI Shude, MENG Qingguo, SHI Qingyu, ZHANG Liguo, ZOU Aili. Numerical simulation of metal plastic flow in friction stir welding affected by pin shape[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 93-96.
    [7]YU Yong-zheng, LUO Yu, LUAN Guo-hong, SUN Cheng-bin. Metal flow behavier in friction stir welding of LF6 aluminum alloy and LD10 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 115-118.
    [8]YU Yong-zheng, LUO Yu, LUAN Guo-hong. Factors affecting on metal plastic flow during friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 117-120.
    [9]ZHANG Hua, LIN San bao, WU Lin, FENG Ji cai, LUAN Guo hong. Current progress and prospect of friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 91-96.
    [10]Du Suigeng, Liu Xiaowen, Wu Shichun, Li Xiaoxia. Plastic Flow Equation of Weld Metal during Quasi-steady Friction Stage[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 219-224.

Catalog

    Article views (229) PDF downloads (85) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return