Advanced Search
LUO Yi, LIU Jinhe, YE Hong, SHEN Bin. Numerical simulation on electron beam deep penetration welding and weld appearance of magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (6): 65-68.
Citation: LUO Yi, LIU Jinhe, YE Hong, SHEN Bin. Numerical simulation on electron beam deep penetration welding and weld appearance of magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (6): 65-68.

Numerical simulation on electron beam deep penetration welding and weld appearance of magnesium alloy

More Information
  • Received Date: January 04, 2009
  • The numerical simulation on vacuum electron beam deep penetration welding for AZ61 magnesium alloy sheet with 10 mm thickness was studied. In view of the thermal effect about metal steam plasma and keyhole deep penetration during vacuum electron beam welding,the moving heat source model composed by Gauss surface source and double ellipsoid body source was developed. And the characteristics of thermal cycle and weld appearance under different welding processes were studied on the basis of simulation and experiment values. The results of simulation and experiment show that the composite source model can gain the effect of deep penetration of electron beam welding and calculate the temperature distribution and the weld geometry under the action of electron beam source. The results also prove that the model is applicable to the thermal effect simulation on the electron beam welding of AZ61 magnesium alloy sheet.
  • Related Articles

    [1]ZHANG Yuelai, PENG Zhangzhu, CHANG Maochun, HU Long, PAN Guochang, XU Bo. Numerical simulation of residual stress in complex aluminum alloy welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 91-96. DOI: 10.12073/j.hjxb.20201215001
    [2]ZENG Qingji, XU Lianyong, HAN Yongdian, JING Hongyang, ZHOU Chunliang. Finite element numerical simulation of electron beam welding of TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 109-112.
    [3]LUO Yi, LIU Jinhe, YE Hong. Numerical simulation on keyhole thermal effect of vacuum electron beam welding of magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (12): 73-76.
    [4]LUO Yi, LIU Jinhe, YE Hong, YAN Zhonglin, SHEN Bin. Numerical simulation on temperature field of electron beam welding of AZ61 magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (3): 73-76.
    [5]ZHANG Guangjun, ZHAO Linlin, LENG Xuesong. Numerical simulation on weld formation of twin-electrode GTAW welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 29-31.
    [6]WANG Qing, ZHANG Yanhua. Numerical simulation on electron beam welding temperature field of heat-resisting superalloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 97-100.
    [7]WANG Jianmin, ZHU Xi, LIU Runquan. Three dimensional numerical simulation for explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (5): 109-112.
    [8]HU Meijuan, LIU Jinhe. Numerical analysis of electron beam welding and local heat treatment combination technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (5): 93-96.
    [9]WANG Xi-chang, WU Bing, ZUO Cong-jin, LIU Fang-jun. New heat source model for numerical simulation of electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 81-84.
    [10]WU Yan-gao, LI Wu-shen, ZOU Hong-jun, FENG Ling-zhi. State-of-the-art of Numerical Simulation In Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 89-92.

Catalog

    Article views (227) PDF downloads (79) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return