Advanced Search
WU Wei, GAO Hongming, WU Lin. Microstructures in CGHAZ and mechanical properties of welded joint during welding of fine grain titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 61-64.
Citation: WU Wei, GAO Hongming, WU Lin. Microstructures in CGHAZ and mechanical properties of welded joint during welding of fine grain titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 61-64.

Microstructures in CGHAZ and mechanical properties of welded joint during welding of fine grain titanium alloy

More Information
  • Received Date: April 23, 2007
  • Fine grain titanium alloy is used extensively in aerospace and aircraft because of its excellent comprehensive properties and outstanding machinability.The evolution of phase, the effect of welding heat input on the grain growth in the coarse grain heat-affected zone(CGHAZ)and mechanical properties of welded joint during gas tungsten arc welding of ultra fine grain Ti-6Al-4V with lamellar microstructure were investigated.Measurement results indicate the severe grain growth coarsening in CGHAZ undergoing welding thermal process.In the CGHAZ, phase transformation during welding process resulted in a microstructure containing α'martensite. Small crossed α'clusters transited into coarse α'beames through the whole grain in the coarse grain heat-affected zone with increasing the heat input.Hardness measurements showed there were softened zone in heat-affected zone, and width of this zone raise with increasing the heat input.However, tensile strenght of welded joint reduced with increasing the heat input.Tensile fractrues located in coarse grain zone present character of quai-cleavage crack with higher heat input. Mass tear ridges had be found on fracture surface, and a large number of dimples existed in the surface of intercrystalline crack.
  • Related Articles

    [1]TANG Quan, SHI Zhixin, MAO Zhiwei. Spatter analysis of rotating arc image based on multi threshold and neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 41-46. DOI: 10.12073/j.hjxb.20211219001
    [2]CHEN Shujun, WU Na, XIAO Jun, LU Zhenyang. Realization and expulsion control of piezoelectric actuator assisted resistance spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 1-7. DOI: 10.12073/j.hjxb.20200122002
    [3]CEN Yaodong, CHEN Furong, CHEN Lin. Mechanism of spatter defects in resistance plug welding of dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 115-120. DOI: 10.12073/j.hjxb.2019400323
    [4]LUO Yi, ZHU Yang, WAN Rui, XIE Xiaojian. Analysis on main factors of resistance spot welding spatter of galvanized sheet based on structure-bearing acoustic emission signals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 85-89.
    [5]WANG Mingmao, TAO Wang, MA Yinan, CHEN Yanbin, WANG Yang. Research on laser spot weld-bonding process characteristics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 101-104.
    [6]XUE Haitao, LI Yongyan, CUI Chunxiang, AN Jinlong. Identification of multiclass defects in aluminum alloy resistance spot welding based on support vector machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 97-100.
    [7]JIANG Shu-yuan, ZHENG Xiao-fang, CHEN Huan-ming, LIU Zhi-ling. Outside magnetic field control to spatter of CO2 arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 65-67.
    [8]WANG Ya-rong, ZHANG Zhong-dian, FENG Ji-cai, Liu Hui, ZOU Li-jing. Effects of surface conditions on spot welded joint of magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 27-30.
    [9]MA Yue-zhou, MA Chun-wei, ZHANG Peng-xian, CHEN Jian-hong. The Model of Spatter Prediction in CO2 Arc Welding Based on the Character of Sound Signal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 19-22.
    [10]Wang Xinzhi, Chen Wuzhu, Cheng Shihong. Reducing Spatter for CO2 Welding Using Inverter with Satiable Inductor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 57-62.

Catalog

    Article views (256) PDF downloads (69) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return