Advanced Search
GUO Xuming, QIAN Bainian, WANG Yu. Effects of nonmetallic inclusions on acicular ferrite nucleation in deposited metals of microalloyed steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 5-8,12.
Citation: GUO Xuming, QIAN Bainian, WANG Yu. Effects of nonmetallic inclusions on acicular ferrite nucleation in deposited metals of microalloyed steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 5-8,12.

Effects of nonmetallic inclusions on acicular ferrite nucleation in deposited metals of microalloyed steel

More Information
  • Received Date: March 14, 2006
  • The effects of the size, distribution and chemical composition of inclusions on nucleation of acicular ferrite in deposited metals of micro-alloyed steel were studied.The results show that the inclusions as nuclei of acicular ferrite are chemical heterogeneous compounds containing various elements.Most of them are within 0.2-0.6 μm in diameter.The inclusions reduce the energy barrier to nucleation by acting as high-energy inert substrates, promoting the nucleation of acicular ferrite.The primary acicular ferrite plates initially nucleate at intragranular inclusions and then many fine interlocked acicular ferrite grains nucleate sympathetically and grow from the primary plates.
  • Related Articles

    [1]ZHANG Chuanchen, ZHANG Tiancang, ZHAO Chunling. Microstructure and high temperature mechanical properties of inertia friction welding joint of K447A + GH4169[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 137-141. DOI: 10.12073/j.hjxb.2019400275
    [2]LI Zhifeng, LI Xiaoqiang, LI Li, LOU Li, QU Shengguan. Analysis on high temperature properties of TiAl alloy joints brazd with a Ti-based filler[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 148-153. DOI: 10.12073/j.hjxb.2019400143
    [3]ZHANG Jing, HAN Wentuo, CHANG Yongqin, WAN Farong. Microstructure and mechanical properties in friction stir welded nanostructured oxide dispersion strengthened steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(10): 9-11,40.
    [4]WU Bingzhi, XU Yujun, AN Hongliang, SUN Jingtao. Property and microstructure of deposited metal with high strength wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 53-57.
    [5]TAO Bohao, LI Hong, SONG Yonglun, LI Qiang. Analysis of orthogonal test of properties of dual-phase DP600 steel resistance spot welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 81-84.
    [6]ZUO Congjin, LI Jinwei, YU Wei, XU Haiying. Tensile performance of Ti-55 and Ti-60 joints welded by electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (4): 103-106.
    [7]CUI Li, LI Xiaoyan, HE Dingyong, KUTSUNA Muneharu. Fiber laser-MIG hybrid welding process of commercial pure titanium and its properties[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 33-36.
    [8]CHEN Jianfeng, CAO Pingzhou, DONG Xianfeng. Experiment on tensile and shear strength of front fillet welded joint post-high-temperatures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 81-84.
    [9]ZHANG Guodong, XUE Jilin, ZHOU Chang Yu. Optimization on welding procedure of high temperature pipeline based on orthogonal test design[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 53-56.
    [10]YIN Lixiang, XU Hongji, WEI Zhiyu, XIE Ming, WANG Yajun. Microstructures and high-temperature properties of TC4 titanium alloy joints welded by electron beam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 49-52.

Catalog

    Article views (215) PDF downloads (58) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return