Advanced Search
HU Rong-hua, ZHANG Hua, XU Jian-ning, WAN Ling-na. Simulation of the influence of scan path on temperature field in the welding rapid prototyping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (11): 75-78.
Citation: HU Rong-hua, ZHANG Hua, XU Jian-ning, WAN Ling-na. Simulation of the influence of scan path on temperature field in the welding rapid prototyping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (11): 75-78.

Simulation of the influence of scan path on temperature field in the welding rapid prototyping

More Information
  • Received Date: September 13, 2005
  • The part fabricated by welding rapid prototyping has excellent mechanics capability, so welding prototyping will be widely applied in the future. But welding is a processing of local high temperature, the distribution of temperature field will affect the quality and performance of welding part. In this paper, one-layer depositing of thin-wall part was studied. Numerical simulation was done by ANSYS, and the influences of scan path on temperature field and stress field were analyzed. This study will offer theoretical foundation to accurataly choose the scan path in the welding rapid prototyping.
  • Related Articles

    [1]SUN Jiamin, CAI Jianpeng, YE Yanhong, Deng Dean. Numerical simulation of electro slag welding temperature field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 93-96.
    [2]ZONG Xuemei, WU Bin, ZHANG Liping, LI Wen. Numerical simulation of temperature field in weaving welding based on ladder model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 9-12.
    [3]ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36.
    [4]CHEN Binbin, PANG Shengyong, ZHOU Jianxin, SUO Hongbo, CHEN Zheyuan, GONG Shuili. Numerical simulation of temperature field during scanning electron beam welding of TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (7): 33-37.
    [5]ZHANG Xiaoqi, XU Guocheng, WANG Chunsheng, WEN Jing. Numerical simulation of the temperature field during resistance spot welding with rectangular electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 101-104.
    [6]CHEN Yunxia, ZHU Miaofeng, LU Fenggui, YAO Shun. Temperature field simulation of electron beam rapid prototyping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 33-37.
    [7]DU Han-bin, HU Lun-ji, WANG Dong-cuan, SUN Cheng-zhi. Simulation of the temperature field and flow field in full penetration laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 65-68,100.
    [8]MENG Qing-guo, FANG Hong-yuan, XU Wen-li, JI Shu-de. Numerical simulation of muli-pass welding temperature field taking account of metal filling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 53-55,59.
    [9]WEI Yan hong, XU Wen li, LIU Ren pei, DONG Zu jie, PENG Bo. Post treatment system of temperature fields for welding solidification crack simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 72-74.
    [10]Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29.

Catalog

    Article views (186) PDF downloads (55) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return