Advanced Search
DING Wen-feng, XU Jiu-hua, LU Jin-bin, FU Yu-can, XIAO Bing, XU Hong-jnn. Microstructure of high temperature brazing cubic boron hitride grits[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 29-32.
Citation: DING Wen-feng, XU Jiu-hua, LU Jin-bin, FU Yu-can, XIAO Bing, XU Hong-jnn. Microstructure of high temperature brazing cubic boron hitride grits[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 29-32.

Microstructure of high temperature brazing cubic boron hitride grits

  • In order to develop new generation monolayer brazed CBN (cubic boron nitride) grinding wheels, Ag-Cu-Ti active filler alloy was utilized to braze CBN grits to steel substrate in vacuum furnace. The microstructure and the element distribution of the joining interface, as well the topography and the phase structure of the compounds on the surface of brazed CBN grits, were analyzed by scanning electron microscope, energy dispersion spectrometer and X-ray diffraction. The results show that Ti in the filler alloy transferred preferentially to the surface of the CBN grit to form a layer of needle-like Ti-nitride and Ti-boride compounds by the interaction reaction between Ti and N and B at high temperature. Thus, the chemical metallurgic joining has been formed in the interface between CBN grits and Ag-Cu-Ti alloys. Finally comparative grinding tests were performed with monolayer brazed CBN grinding wheels and electroplated ones, and the result indicates that the brazed wheels showed higher joining strength to the CBN grits than the latter.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return