Advanced Search
ZHOU Shi-feng, WANG Yu-cheng, LI Xiang-yang, ZHOU Bao-jin, LI Xiao-yu, LI Bin, LI Wei-dong. Microstructure and mechanical properties in simulated HAZ of 0Cr13Ni5Mo martensitic stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (4): 63-66.
Citation: ZHOU Shi-feng, WANG Yu-cheng, LI Xiang-yang, ZHOU Bao-jin, LI Xiao-yu, LI Bin, LI Wei-dong. Microstructure and mechanical properties in simulated HAZ of 0Cr13Ni5Mo martensitic stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (4): 63-66.

Microstructure and mechanical properties in simulated HAZ of 0Cr13Ni5Mo martensitic stainless steel

More Information
  • Received Date: October 24, 2003
  • By simulating the welding thermal cycle,the continuous cooling transformation diagram of heat-affected zone (HAZ) of ZG0Cr13Ni5Mo martensitic stainless steel was established.The diagram indicates that there are no other transformation but austenite→martensite in HAZ,and the cooling rate has no obvious effect on the temperature Ms of martensite initial transformation.The hardness of simulated HAZ decreases slightly as the cooling rate decreases.By using Gleeble thermal simulation technique the microstructures of HAZ at various welding thermal cycles were simulated,and the hardness,impact toughness and microstructures were investigated.The results show that the hardness of simulated HAZ is much higher than base metal's hardness,and the impact toughness of simulated HAZ is much lower than the base metal's.In the single thermal cycle simulating the root pass welding,the cooling rate has no effect on hardness and impact toughness of simulated HAZ.In multi-thermal cycles simulating the multi-pass welding,the heat treatment between passes and layers is not significant.Postweld heat treatment at 590℃ is an essential way to improve the impact toughness of HAZ greatly.
  • Related Articles

    [1]ZHANG Xiaoli, LI Yuzhen, LONG Peng, XUE Jiaxiang. Pulsed MIG welding of aluminum alloy sheet based on fuzzy self-tuning PID control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 83-87.
    [2]HUANG Jiankang, ZHANG Gang, FAN Ding, SHI Yu. Decoupling control analysis of aluminum alloy pulse MIG welding process based on dynamic fuzzy neural networks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 43-47.
    [3]LÜ Yan, TIAN Xincheng, LIANG Jun. Decoupling control design and simulation of aluminum alloy pulsed MIG welding based on dynamic PLS framework[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 17-20.
    [4]LU Lihui, SHI Yu, HUANG Jiankang, FAN Jiawei, FAN Ding. Vision sensing and control for wire extension in pulsed MIG welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 63-66.
    [5]HUANG Jiankang, SHI Yu, LU Lihui, ZHU Ming, FAN Ding. Weld width control of double pulsed MIG welding for aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (5): 13-16.
    [6]SHI Yu, XUE Cheng, FAN Ding, LI Jianjun. Modeling and simulation of decoupling control system of aluminum pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 9-12.
    [7]HAN Jing-hua, SHAN Ping, HU Sheng-sun, LU Ya-jing. Modeing and simulation of digital signal processor-based pulsed metal inert-gas welding digital control system[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 91-94.
    [8]GUO Hai-yun, LI Huan, LIU Qiong, WANG Jiong-xiang, LIU Xin-quan, ZHAO Wei-zhen, FU Yu-wen. Effect of pulsed parameters on dynamic simulating waveform of pulsed submergedarc welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (9): 61-64.
    [9]WU Feng-shun, LU Zhong-liang, WANG Lei, HU Yan-xiang, XIE Ming-li. Application of statistical process control in submerged arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 69-72,76.
    [10]Yin Shuyan, Gang Tie, Bu Huaquan. Microcumputer control system of synergic pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (1): 46-52.
  • Cited by

    Periodical cited type(12)

    1. 周勇,张成文,张国军,李纪运,付芳艳,王洪铎. MAG焊接技术研究进展. 热加工工艺. 2023(15): 6-12 .
    2. 徐刚,张天雷,何林基,沈艳涛,马春伟. 摆动电弧窄间隙厚板焊接工艺与熔池演变数值研究. 轻工机械. 2021(01): 40-46 .
    3. 彭广涛,张义顺,张华军,兰虎. 弧间距对T形接头全熔透横角焊缝成形的影响. 焊接技术. 2021(04): 24-28 .
    4. 莫春立,李贞尚,赵磊,常云龙. TIG焊熔池流动及温度分布的数值模拟. 沈阳航空航天大学学报. 2021(02): 28-34 .
    5. 张义顺,丛林,张华军. 中厚板立向角焊缝机器人深熔焊接工艺. 沈阳工业大学学报. 2021(06): 635-640 .
    6. 王子然,赵宝,李洪涛,李荣,王克南. U型钢机器人快速MAG焊接工艺研究. 机械制造文摘(焊接分册). 2019(02): 19-25 .
    7. 王子然,张善保,杨战利,杨义成. 间隙对GMAW立焊熔滴过渡的影响及温度场特性. 焊接学报. 2019(05): 89-94+165 . 本站查看
    8. 胥国祥,朱杰,王加友,李林,郑志强. 摇动电弧窄间隙FCAW立焊流体流动数值分析模型. 机械工程学报. 2019(18): 63-69 .
    9. 洪宇翔,汤小虎,唐碧波,芦川. 摆动电弧立焊熔池热源模型及电流波形分析. 电焊机. 2018(11): 1-6 .
    10. 袁帅,刘文吉,李亮玉,蒋晓. 考虑侧壁熔合的摆动电弧窄间隙MAG焊温度场热源模型. 焊接学报. 2018(12): 95-99+133 . 本站查看
    11. 胥国祥,潘海潮,王加友. 摇动电弧窄间隙GMAW焊温度场数值分析模型. 焊接学报. 2017(10): 55-60+131 . 本站查看
    12. 江祥胜,许燕,周建平,单雪海. 基于金属粉末支撑的堆焊成形铺粉系统研究. 机床与液压. 2017(13): 15-18+80 .

    Other cited types(14)

Catalog

    Article views (235) PDF downloads (92) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return