Advanced Search
LI Ju, GUAN Qiao, SHI Yao-wu, GUO De-lun, ZHANG Chong-xian, DU Yu-xiao. Temperature field of TIG welding with a spot heat sink of Ti alloy thin sheet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 69-72.
Citation: LI Ju, GUAN Qiao, SHI Yao-wu, GUO De-lun, ZHANG Chong-xian, DU Yu-xiao. Temperature field of TIG welding with a spot heat sink of Ti alloy thin sheet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 69-72.

Temperature field of TIG welding with a spot heat sink of Ti alloy thin sheet

More Information
  • Received Date: July 01, 2002
  • The temperature field and the temperature developing history were studied both numerically and experimentally for the conventional TIG welding and TIG welding with a spot heat sink of Ti alloy TC4.Comparing with the "static" control method,in which a temperature field was preset on workpieces,the TIG welding with a spot heat sink was also named dynamically controlled low stress no-distortion (DC-LSND) wel-ding technique,in which the arc was followed with a moving spot heat sink.The results showed that the saddle-backed temperature field was formed near the heat sink in DC-LSND TIG welding.There existed a low temperature region at the zone where the heat sink was applied.The contraction of this zone led to tensile action on the high temperature region nearby,which effectively reduced the incompatible strains and residual tensile stress in the weld,and prevented the occurrence of deformation.The research on the distorted temperature field of DC-LSND welding was the prerequisite to understand the mechanism of controlling deformation by this method.
  • Related Articles

    [1]MA Jingping, CAO Rui, ZHOU Xin. Development on improving fatigue life of high strength steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 115-128. DOI: 10.12073/j.hjxb.20230711001
    [2]YIN Chengjiang, SONG Tianmin, LI Wanli. Effect of high-temperature welding on fatigue life of 2.25Cr1Mo steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 106-108.
    [3]SUN Chengzhi, CAO Guangjun. Fatigue life simulation of spot weld based on equivalent structure stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (1): 105-108.
    [4]ZHANG Liang, XUE Songbai, HAN Zongjie, LU Fangyan, YU Shenglin, LAI Zhongmin. Fatigue life prediction of SnAgCu soldered joints of FCBGA device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 85-88.
    [5]WU Liangchen, WANG Dongpo, DENG Caiyan, WANG Kang. Fatigue properties of welded joints of 16Mn steel in super long life region[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 117-120.
    [6]DING Yanchuang, ZHAO Wenzhong. Stiffness coordination strategy for increasing fatigue life and its application in welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 31-34.
    [7]Li Zhen, Zheng Xiulin. Prediction of Fatigue Life for Peened Butt Welds of 16Mn Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (3): 151-158.
    [8]Lü Baotong, Zheng Xiulin. Fatigue life prediction for butt welds of 30CrMnSiNi2A steel containing welding delect[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (4): 241-247.
    [9]Ling Chao, Zheng Xiulin. Overloading effect upon fatigue life of 16Mn steel butt welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 247-251.
    [10]Xing Guochen, Fang Dexin. INCREASING FATIGUE LIFE OF WELDED FRAME BOGIE FOR RAILWAY COACH[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1990, (3): 181-185.

Catalog

    Article views (228) PDF downloads (58) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return