Advanced Search
Zhai Zongren, Zheng Ligang. A STUDY OF THE MECHANISM OF GRAIN BOUNDARY PENETRATION OF COPPER BASE FILLER METAL IN HIGH TEMPERATURE BRAZING FOR STAINLESS STEEL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (1): 1-9.
Citation: Zhai Zongren, Zheng Ligang. A STUDY OF THE MECHANISM OF GRAIN BOUNDARY PENETRATION OF COPPER BASE FILLER METAL IN HIGH TEMPERATURE BRAZING FOR STAINLESS STEEL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (1): 1-9.

A STUDY OF THE MECHANISM OF GRAIN BOUNDARY PENETRATION OF COPPER BASE FILLER METAL IN HIGH TEMPERATURE BRAZING FOR STAINLESS STEEL

More Information
  • Received Date: August 16, 1987
  • The characteratics of grain boundary pcnclration in 1Cr18Ni9Ti stainless steel brazed with copper base filler metals are explained in this paper. The form and mechanism of the grain boundary penetration of copper base filler metal, being related to their wetting-spreading property are different in nature from those of boric filler metals. The said wetting-spreading of copper base filler metals is of a three-dimensional space model as confirmed by a study of Cu and CuMnCo filler metals on the surface of stainless steel. A copper-rich liquid Cu-Mn which wets and spreads along the grain boundary groove on the two-dimension surface of a base metal penetrates simultaneously the internal grain boundary as well. In general, the grain boundary penetration of copper base filler metals will not cause brittle phase and will not weaken the joint. However,it is possible that the grain boundary penetration may result in grain boundary mbritlment if stress exists during brazing.
  • Related Articles

    [1]KANG Tianyou, SUN Lei, WANG Xinghua, ZHANG Yuxiang, WANG Renfu, ZHANG Youjing. Strengthing and toughening mechanism of weld metal of 690 MPa grade high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240108001
    [2]CAO Zhilong, ZHU Hao, AN Tongbang, WANG Chenji, MA Chengyong, PENG Yun. Analysis of the strengthening and toughening mechanism of deposited metal of 1000 MPa grade high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 116-122. DOI: 10.12073/j.hjxb.20220609002
    [3]YIN Yan, PAN Cunliang, ZHAO Chao, ZHANG Ruihua, QU Yuebo. Formation mechanism of microstructure of laser cladding high chromium Fe-based alloy and its effect on microhardness[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 114-120. DOI: 10.12073/j.hjxb.2019400192
    [4]LIU Zhengjun, QIU Rongpeng, WU Dan, SU Yunhai. Research on toughening mechanism of weld metal with metal powder flux-cored wire for 960 MPa high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 102-106. DOI: 10.12073/j.hjxb.2018390023
    [5]ZHANG Chunhua, LIU Jie, WU Chenliang, ZHANG Song, GUANG Meng, TAN Junzhe. Microstructue and zinc corrosion mechanism of laser cladding Co-based alloy on 316L stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(1): 19-22.
    [6]LI Meiyan, HAN Bin, GAO Ning, WANG Yong, SONG Lixin. Strengthening and toughening mechanism of laser cladding Fe-based coating on plunger surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 19-22.
    [7]LI Chonggui, FENG Xiaosong, LU Qinghua, ZHANG Peilei, YU Zhishui, WANG You. Strength and toughness of laser-remelted Al2O3-TiO2 coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 63-66.
    [8]ZHU Qingjun, ZOU Zengda, WANG Xinhong, QU Shiyao. Influence of rare earths on Fe-based amorphous composite coatings by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 57-60.
    [9]SHAN Ji-guo, DING Jian-chun, REN Jia-lie. Microstructure and Strengthening Mechanism of Light Beam Cladding Layer with Iron-based Self-fluxing Alloy Powder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (4): 1-4.
    [10]Huang Xuqiang, L× Chaoyang. A Study of Glass-Forming Conditions of Laser-Surface-Melted Fe-Ni-Si-B-V Alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (1): 64-67.

Catalog

    Article views (202) PDF downloads (67) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return