Advanced Search
JIANG Xiaohui, DAI Yuancheng, GUO Weicheng, YANG Tianhao. Effect of interlayer spacing on the microstructure and mechanical properties of 2219 aluminum alloy by rod feed additive friction stir deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 102-111. DOI: 10.12073/j.hjxb.20240908001
Citation: JIANG Xiaohui, DAI Yuancheng, GUO Weicheng, YANG Tianhao. Effect of interlayer spacing on the microstructure and mechanical properties of 2219 aluminum alloy by rod feed additive friction stir deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 102-111. DOI: 10.12073/j.hjxb.20240908001

Effect of interlayer spacing on the microstructure and mechanical properties of 2219 aluminum alloy by rod feed additive friction stir deposition

More Information
  • Received Date: September 07, 2024
  • Available Online: February 23, 2025
  • In order to improve the solid phase additive manufacturing performance of aerospace high strength and toughness 2219-T8 aluminum alloy, single-channel multi-layer deposition parts with interlayer spacing of 1 mm, 1.5 mm and 2 mm were prepared by friction stir deposition process in this study. The effects of interlayer spacing on the microstructure and mechanical properties of the deposited parts were analyzed. The results show that when the interlayer spacing was reduced from 2 mm to 1 mm, the dense defect-free area of the deposited part was expanded from 24.5 mm to 33 mm, and the material bonding was more sufficient. At the same time, the grains of the deposited parts were obviously refined, and the average grain size was reduced from 3.69 μm to 2.27 μm. The hardness of the deposited parts did not change significantly, and the overall hardness gradient increased, but the homogeneity was better. The tensile strength and elongation of the deposited parts in the construction direction increased by 26 MPa and 3 %, respectively, while the longitudinal mechanical properties did not change much. When the interlayer spacing was 1 mm, the deposited parts show the best material properties, the yield strength was 122 MPa, the tensile strength was 207 MPa, the elongation after fracture was 7%, and the average hardness was 75.6 HV.

  • [1]
    倪允强, 杨健楠, 方学伟, 等. 2219铝合金CMT电弧增材熔滴过渡行为[J]. 焊接学报, 2024, 45(2): 19 − 32. doi: 10.12073/j.hjxb.20230308003

    Ni Yunqiang, Yang Jiannan, Fang Xuewei, et al. 2219 aluminum alloy CMT arc additive droplet transfer behavior[J]. Transactions of the China Welding Institution, 2024, 45(2): 19 − 32. doi: 10.12073/j.hjxb.20230308003
    [2]
    金恩沛. 火箭2219铝合金燃料贮箱封头旋压成形工艺优化与试验[D]. 秦皇岛: 燕山大学, 2022.

    Jin Enpei. Spinning process optimization and test of rocket 2219 aluminum alloy fuel tank head [D]. Qinhuangdao: Yanshan University, 2022.
    [3]
    刘立安, 赵舵, 陆伟, 等. 运载火箭贮箱箱底搅拌摩擦焊工艺研究[J]. 上海航天, 2020, 37(S2): 249 − 252.

    Liu Li'an, Zhao Duo, Lu Wei, et al. Research on friction stir welding process of carrier rocket tank bottom[J]. Shanghai Aerospace, 2020, 37(S2): 249 − 252.
    [4]
    谭永华, 赵剑, 张武昆, 等. 融合增材制造的液体火箭发动机创新设计方法与应用[J]. 火箭推进, 2023, 49(4): 1 − 16. doi: 10.3969/j.issn.1672-9374.2023.04.001

    Tan Yonghua, Zhao Jian, Zhang Wukun, et al. Innovative design methods and applications of liquid rocket engines integrated with additive manufacturing[J]. Rocket Propulsion, 2023, 49(4): 1 − 16. doi: 10.3969/j.issn.1672-9374.2023.04.001
    [5]
    倪江涛, 隋阳, 刘涵, 等. 增材制造技术在国外航天动力系统中的应用[J]. 导弹与航天运载技术, 2022(3): 144 − 146.

    Ni Jiangtao, Sui Yang, Liu Han, et al. Application of additive manufacturing technology in foreign aerospace power systems[J]. Missile and Aerospace Delivery Technology, 2022(3): 144 − 146.
    [6]
    Gopan V, Wins L D K, Surendran A. Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes: A review[J]. Cirp Journal of Manufacturing Science and Technology, 2021, 32: 228 − 248. doi: 10.1016/j.cirpj.2020.12.004
    [7]
    杜文博, 李晓亮, 李霞, 等. 搅拌摩擦沉积增材技术研究现状[J]. 机械工程学报, 2024, 60(7): 374 − 384.

    Du Wenbo, Li Xiaoliang, Li Xia, et al. Research status of friction stir deposition additive technology[J]. Journal of Mechanical Engineering, 2024, 60(7): 374 − 384.
    [8]
    温琦, 刘景麟, 孟祥晨, 等. 搅拌摩擦增材制造关键技术与装备发展[J]. 焊接学报, 2022, 43(6): 1 − 10. doi: 10.12073/j.hjxb.20220103001

    Wen Qi, Liu Jinglin, Meng Xiangchen, et al. Key technologies and equipment development of friction stir additive manufacturing[J]. Transactions of the China Welding Institution, 2022, 43(6): 1 − 10. doi: 10.12073/j.hjxb.20220103001
    [9]
    Li Xia, Li Xiaoliang, Hu Shenheng, et al. Additive friction stir deposition: a review on processes, parameters, characteristics, and applications[J]. The International Journal of Advanced Manufacturing Technology, 2024, 133(3-4): 1111 − 1128. doi: 10.1007/s00170-024-13890-4
    [10]
    王瑞林, 杨新岐, 唐文珅, 等. 搅拌摩擦沉积增材2219铝合金组织及性能[J]. 航空材料学报, 2024, 44(1): 152 − 162. doi: 10.11868/j.issn.1005-5053.2023.000158

    Wang Ruilin, Yang Xinqi, Tang Wenshen, et al. Microstructure and properties of friction stir deposited additive 2219 aluminum alloy[J]. Journal of Aeronautical Materials, 2024, 44(1): 152 − 162. doi: 10.11868/j.issn.1005-5053.2023.000158
    [11]
    张明, 李一迪, 汪辉, 等. 主轴转速对搅拌摩擦增材2219铝合金组织及性能的影响[J]. 中国有色金属学报, 2024, 34(4): 1215 − 1226. doi: 10.11817/j.ysxb.1004.0609.2023-44302

    Zhang Ming, Li Yidi, Wang Hui, et al. Effect of spindle speed on microstructure and properties of friction stir additive 2219 aluminum alloy[J]. Chinese Journal of Nonferrous Metals, 2024, 34(4): 1215 − 1226. doi: 10.11817/j.ysxb.1004.0609.2023-44302
    [12]
    唐文珅, 杨新岐, 田超博, 等. 工艺参数对铝合金摩擦挤压增材组织及性能的影响[J]. 航空材料学报, 2022, 42(1): 59 − 67. doi: 10.11868/j.issn.1005-5053.2021.000166

    Tang Wenshen, Yang Xinqi, Tian Chaobo, et al. Effect of process parameters on microstructure and properties of aluminum alloy friction extrusion additive[J]. Journal of Aeronautical Materials, 2022, 42(1): 59 − 67. doi: 10.11868/j.issn.1005-5053.2021.000166
    [13]
    Williams M B, Zhu N, Palya N I, et al. Towards understanding the relationships between processing conditions and mechanical performance of the additive friction stir deposition process[J]. Metals, 2023, 13(10): 1663. doi: 10.3390/met13101663
    [14]
    Griffiths R J, Garcia D, Song J, et al. Solid-state additive manufacturing of aluminum and copper using additive friction stir deposition: Process-microstructure linkages[J]. Materialia, 2021, 15: 100967. doi: 10.1016/j.mtla.2020.100967
    [15]
    Phillips B J, Avery D Z, Liu T, et al. Microstructure-deformation relationship of additive friction stir-deposition Al–Mg–Si[J]. Materialia, 2019, 7: 100387. doi: 10.1016/j.mtla.2019.100387
    [16]
    Garcia D, Hartley W D, Rauch H A, et al. In situ investigation into temperature evolution and heat generation during additive friction stir deposition: A comparative study of Cu and Al-Mg-Si[J]. Additive Manufacturing, 2020, 34: 101386. doi: 10.1016/j.addma.2020.101386
    [17]
    Dong H, Li X, Xu K, et al. A rview on solid-state-based additive friction stir deposition[J]. Aerospace, 2022, 9(10): 565. doi: 10.3390/aerospace9100565
    [18]
    Chen G, Wu K, Wang Y, et al. Effect of rotational speed and feed rate on microstructure and mechanical properties of 6061 aluminum alloy manufactured by additive friction stir deposition[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(3-4): 1165 − 1176. doi: 10.1007/s00170-023-11527-6
    [19]
    Tang W, Yang X, Tian C, et al. Interfacial grain structure, texture and tensile behavior of multilayer deformation-based additively manufactured Al 6061 alloy[J]. Materials Characterization, 2023, 196: 112646. doi: 10.1016/j.matchar.2023.112646
    [20]
    Zeng C, Ghadimi H, Ding H, et al. Microstructure evolution of Al6061 alloy made by additive friction stir deposition[J]. Materials, 2022, 15(10): 3676. doi: 10.3390/ma15103676
    [21]
    Mason C J T, Rodriguez R I, Avery D Z, et al. Process-structure-property relations for as-deposited solid-state additively manufactured high-strength aluminum alloy[J]. Additive Manufacturing, 2021, 40: 101879. doi: 10.1016/j.addma.2021.101879
    [22]
    Williams M B, Robinson T W, Williamson C J, et al. Elucidating the effect of additive friction stir deposition on the resulting microstructure and mechanical properties of magnesium alloy WE43[J]. Metals, 2021, 11(11): 1739.
    [23]
    Rivera O G, Allison P G, Brewer L N, et al. Influence of texture and grain refinement on the mechanical behavior of AA2219 fabricated by high shear solid state material deposition[J]. Materials Science and Engineering: A, 2018, 724: 547 − 558. doi: 10.1016/j.msea.2018.03.088
    [24]
    Abbasi M, Bagheri B, Abdoliahzadeh A, et al. A different attempt to improve the formability of aluminum tailor welded blanks (TWB) produced by the FSW[J]. International Journal of Material Forming, 2021, 14(5): 1189 − 1208. doi: 10.1007/s12289-021-01632-w
    [25]
    徐道芬. 2219变形铝合金多相组织调控及对拉伸性能各向异性的影响[D]. 长沙: 中南大学, 2022.

    Xu Daofen. 2219 wrought aluminum alloy multi-phase structure control and its effect on tensile anisotropy [D]. Changsha: Central South University, 2022.
    [26]
    Ghadimi H, Talachian M, Ding H, et al. The effects of layer thickness on the mechanical properties of additive friction stir deposition-fabricated aluminum alloy 6061 parts[J]. Metals, 2024, 14(1): 101. doi: 10.3390/met14010101
    [27]
    吴涛, 谭振, 王立伟, 等. 异质双丝间接电弧增材制造Al-Mg-Cu合金组织与力学性能[J]. 焊接学报, 2023, 44(10): 64 − 70. doi: 10.12073/j.hjxb.20230305003

    Wu Tao, Tan Zhen, Wang Liwei, et al. Microstructure and mechanical properties of Al-Mg-Cu alloy fabricated by heterogeneous twin-wire indirect arc additive manufacturing[J]. Transactions of The China Welding Institution, 2023, 44(10): 64 − 70 . doi: 10.12073/j.hjxb.20230305003
    [28]
    田超博, 杨新岐, 唐文珅, 等. 基于摩擦挤压增材制造的单道多层6061铝合金组织特征与力学性能[J]. 稀有金属材料与工程, 2022, 51(8): 2870 − 2880.

    Tian Chaobo, Yang Xinqi, Tang Wenshen, et al. Microstructure and mechanical properties of single-track multi-layer 6061 aluminum alloy fabricated by friction extrusion additive manufacturing[J]. Rare Metal materials and Engineering, 2022, 51(8): 2870 − 2880.
    [29]
    Bagheri B, Abbasi M, Abdollahzadeh A, et al. A comparative study between friction stir processing and friction stir vibration processing to develop magnesium surface nanocomposites[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(8): 1133 − 1146. doi: 10.1007/s12613-020-1993-4
    [30]
    Abbasi M, Givi M, Bagheri B. Application of vibration to enhance efficiency of friction stir processing[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(7): 1393 − 1400. doi: 10.1016/S1003-6326(19)65046-6
  • Related Articles

    [1]HE Yanming, LIANG Jiabin, ZHANG Chengyin, SHI Lei, JIN Xia, LV Chuanyang1, LI Huaxin. Microstructure and mechanical properties of high-quality AlN/Cu joints brazed by a novel AgCuTi+Y2O3 composite brazing alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240618002
    [2]GAO Yan, CUI Li, CHANG Yaoqing, GU Changshi, HE Dingyong. Microstructures and properties of fiber laser-MIG hybrid welded joints for marine corrosion resistant steel DH36[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 60-66. DOI: 10.12073/j.hjxb.2019400128
    [3]XIAO Xiaoming, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of heat input on microstructure and properties of weld metal in MAG welding of weathering steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 41-46.
    [4]HE Xiaomei, WANG Yaomian, ZHANG Conghui. Influence of high energy shot peening on microstructure and properties of TC4 welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 40-44.
    [5]MENG Junsheng, JI Zesheng. Microstructure and properties of in-situ TiC-TiB2/Ti composite coating by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 67-70.
    [6]YAN Jianhui, MA Sujuan, LIU Longfei, TANG Siwen. Effect of doped CeO2 on properties of nano-ZrO2-Y2O3 coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (10): 75-78.
    [7]WEI Jinshan, QI Yanchang, PENG Yun, TIAN Zhilin. Effect of heat input on the microstructure and properties of weld metal welding in a 800 MPa grade heavy steel plate with narrow gap groove[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 31-34.
    [8]QI Yanchang, PENG Yun, WEI Jinshan, TIAN Zhiling. Effect of carbon on microstructure and properties of C-1.5Mn-2.5Ni-0.5Cr-0.5Mo high strength steel weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 41-44.
    [9]ZHANG Xiaoyong, GAO Huilin, ZHUANG Chuanjing, JI Lingkang. Influence of welding heat input on microstructure and properties of coarse grain heat-affected zone in X100 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 29-32.
    [10]JIN Guo, XU Binshi, WANG Haidou, LI Qingfen, WEI Shicheng. Microstructure and properties of martensite stainless steel coating by different spraying methods[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 39-42.
  • Cited by

    Periodical cited type(1)

    1. 马晓锋,夏攀,刘海生,史铁林,王中任. 全位置焊接熔池的深度学习检测方法. 机械工程学报. 2023(12): 272-283 .

    Other cited types(0)

Catalog

    Article views (43) PDF downloads (26) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return