Advanced Search
GAO Baoqi, ZHAO Yanhua, ZHANG Lina, SHAO Zhen, GUAN Wei, HUANG Yiming, CUI Lei. Forming behavior of friction pull plug welding for 2219 aluminum alloy and its effect on interfacial bonding quality[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 7-17, 71. DOI: 10.12073/j.hjxb.20240831002
Citation: GAO Baoqi, ZHAO Yanhua, ZHANG Lina, SHAO Zhen, GUAN Wei, HUANG Yiming, CUI Lei. Forming behavior of friction pull plug welding for 2219 aluminum alloy and its effect on interfacial bonding quality[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 7-17, 71. DOI: 10.12073/j.hjxb.20240831002

Forming behavior of friction pull plug welding for 2219 aluminum alloy and its effect on interfacial bonding quality

More Information
  • Received Date: August 30, 2024
  • Available Online: December 29, 2024
  • Aiming at improving the interfacial bonding quality of friction pull plug welding (FPPW) joints for 2219 aluminum alloy, the evolutions of temperature, plastic strain, and normal stress field during forming of joints were investigated on the basis of both experimental and simulation results, as well as their influence on interfacial bonding quality. The results indicate that during the welding process, when the rotating plug rotates and feeds, the interfacial temperature increases to about 525 ℃, and the material around the interface experiences severe plastic deformation. It can be analyzed that the interfacial normal stress shows non-uniformity throughout the thickness of the plate, exhibiting an initial increase followed by a subsequent decrease. When the plug stops rotating, the interfacial temperature decreases and plastic strain shows no obvious increase. The normal stress at the upper interface increases and exceeds that at the lower interface. It can be analyzed that the normal stress shows more obvious effect on the interfacial bonding quality compared with temperature and plastic strain. By adjusting the volume of plastic flow material near the interface, the normal stress increases and exhibits uniform, resulting in more fresh metal being extruded into the broken area of oxide film, and increasing the real contact area of fresh metal. The interfacial bonding quality and tensile property of joints can be effectively improved.

  • [1]
    李德福, 王希靖, 赵早龙, 等. 轴肩辅助加热6082铝合金摩擦塞补焊接头组织及力学性能[J]. 焊接学报, 2022, 43(1): 36 − 41.

    Li Defu, Wang Xijing, Zhao Zaolong, et al. Microstructure and mechanical properties of friction plug repair welding joint by shoulder auxiliary heating for 6082 aluminum alloy[J]. Transactions of the China Welding Institution, 2022, 43(1): 36 − 41.
    [2]
    Dong J H, Huang Y M, Zhu J L, et al. Quality assessment of friction-stir-welded aluminum alloy welds via three-dimensional force signals[J]. Advances in Manufacturing, 2024, 12(1): 61 − 75. doi: 10.1007/s40436-023-00452-2
    [3]
    李书新, 孙转平, 刘旭, 等. 7075-T651铝合金摩擦塞补焊接头的组织与性能[J]. 焊接学报, 2023, 44(7): 95 − 101.

    Li Shuxin, Sun Zhuanping, Liu Xu, et al. Microstructure and properties of 7075-T651 aluminum alloy friction plug welding joint[J]. Transactions of the China Welding Institution, 2023, 44(7): 95 − 101.
    [4]
    Cui L, Lu P, Li W K, et al. Influence of axial force parameters to the quality of friction pull plug welding for 2219-T87 aluminum alloy sheets[J]. Science and Technology of Welding and Joining, 2018, 24(1): 27 − 35.
    [5]
    Du B, Sun Z P, Yang X, et al. Characteristics of friction plug welding to 10 mm thick AA2219-T87 sheet: weld formation, microstructure and mechanical property[J]. Material Science and Engineering A, 2016, 654: 21 − 29. doi: 10.1016/j.msea.2015.12.019
    [6]
    蒋常铭. 6082-T6铝合金摩擦塞补焊工艺优化及数值模拟[D]. 兰州: 兰州理工大学, 2023.

    Jiang Changming. Optimization and numerical simulation of welding process for 6082-T6 aluminum alloy friction plug welding[D]. Lanzhou : Lanzhou University of Technology, 2023.
    [7]
    Du B, Yang X Q, Tang WS, et al. Numerical analyses of material flows and thermal processes during friction plug welding for AA2219 aluminum alloy[J]. Journal of Materials Processing Technology, 2020, 278: 116466. doi: 10.1016/j.jmatprotec.2019.116466
    [8]
    Du B, Cui L, Yang X Q, et al. Weakening mechanism and tensile fracture behavior of AA 2219-T87 friction plug welds[J]. Materials Science and Engineering A, 2017, 693: 129 − 135. doi: 10.1016/j.msea.2017.03.093
    [9]
    Gao J Y, Yang L J, Cui L, et al. Improving the weld formation and mechanical properties of the AA-5A06 friction pull plug welds by axial force control[J]. Acta Metallurgica Sinica (English letters), 2020, 33: 828 − 838. doi: 10.1007/s40195-020-01015-1
    [10]
    卢鹏, 崔雷, 王惠苗, 等. 2219铝合金拉锻式摩擦塞补焊工艺研究[J]. 航空制造技术, 2019, 62(12): 55 − 64.

    Lu Peng, Cui Lei, Wang Huimiao, et al. Friction pull plug welding process of 2219 aluminum alloy[J]. Aeronautical Manufacturing Technology, 2019, 62(12): 55 − 64.
    [11]
    邵震, 崔雷, 王东坡, 等. 轴向拉力对铝合金拉拔式摩擦塞焊接头组织及力学性能的影响[J]. 机械工程学报, 2021, 57(20): 117 − 125. doi: 10.3901/JME.2021.20.117

    Shao Zhen, Cui Lei, Wang Dongpo, et al. Influence of axial force on the microstructure and mechanical properties of 2A70 aluminum alloy friction pull plug welding[J]. Journal of Mechanical Engineering, 2021, 57(20): 117 − 125. doi: 10.3901/JME.2021.20.117
    [12]
    邵震, 崔雷, 王东坡, 等. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25 − 32.

    Shao Zhen, Cui Lei, Wang Dongpo, et al. Influence of geometric parameters on microstructure and mechanical properties of friction pull plug welding joints for 2219 aluminum alloy[J]. Journal of Materials Engineering, 2022, 50(1): 25 − 32.
    [13]
    梁鑫裕. 大厚度2219铝合金拉拔式摩擦塞补焊工艺优化[D]. 天津: 天津大学, 2023.

    Liang Xinyu. The friction pull plug welding process optimization of AA2219 with large thickness[D]. Tianjin : Tianjin University, 2023.
    [14]
    邓越, 崔雷, 王东坡, 等. 铝合金拉拔式摩擦塞补焊成形及其对界面结合行为的影响[J]. 中国有色金属学报, 2023, 33(9): 2825 − 2838.

    Deng Yue, Cui Lei, Wang Dongpo, et al. Forming of aluminum alloy friction pull plug welding and its influence on interfacial bonding behavior[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(9): 2825 − 2838.
    [15]
    邓越, 刘正武, 浦岩昊, 等. 2219铝合金拉拔式摩擦塞补焊接头界面缺陷研究[J]. 航天制造技术, 2023(4): 30 − 35.

    Deng Yue, Liu Zhengwu, Pu Yanhao, et al. Study on interfacial defects of 2219 aluminum alloy friction pull plug welding[J]. Aerospace Manufacturing Technology, 2023(4): 30 − 35.
    [16]
    Wang H X, Wei Y H, Yang C L. Numerical calculation of variable polarity keyhole plasma arc welding process for aluminum alloys based on finite difference method[J]. Computational Materials Science, 2007, 40(2): 213 − 225. doi: 10.1016/j.commatsci.2006.12.006
    [17]
    Geng P H, Qin G L, Chen L, et al. Effect of tool revolutionary pitch on heat transfer and material flow in Al/steel friction stir lap welding[J]. Journal of Materials Processing Technology, 2024, 325: 118306. doi: 10.1016/j.jmatprotec.2024.118306
    [18]
    Saad B Aziz, Mohammad W Dewan, Daniel J Huggett, et al. A fully coupled thermomechanical model of friction stir welding (FSW) and numerical studies on process parameters of lightweight aluminum alloy joints[J]. Acta Metallurgica Sinica (English letters), 2018, 31: 1 − 18. doi: 10.1007/s40195-017-0658-4
    [19]
    陈永亮, 杨子超, 林恒利, 等. 拉锻式摩擦塞焊的热力耦合解析模型和试验验证[J]. 中国机械工程, 2020, 31(17): 2118 − 2127.

    Chen Yongliang, Yang Zichao, Lin Hengli, et al. Analytical model of thermo-mechanics coupling and experimental verification for friction pull plug welding[J]. China Mechanical Engineering, 2020, 31(17): 2118 − 2127.
    [20]
    Xu S B, Zhao G Q, Ren G. Numerical simulation and experimental investigation of pure copper deformation behavior for equal channel angular pressing/extrusion process[J]. Computational Materials. Science, 2008, 44(2): 247 − 252. doi: 10.1016/j.commatsci.2008.03.032
    [21]
    Chen H, Zhao G Q, Zhang C S, et al. Numerical simulation of extrusion process and die structure optimization for a complex aluminum multicavity wallboard of high-speed train[J]. Materials and Manufacturing Processes, 2011, 26(12): 1530 − 1538. doi: 10.1080/10426914.2011.551950
    [22]
    Yu J Q, Zhao G Q. Interfacial structure and bonding mechanism of weld seams during porthole die extrusion of aluminum alloy profiles[J]. Materials Characterization, 2018, 138: 56 − 66. doi: 10.1016/j.matchar.2018.01.052
    [23]
    Chen H Y, Fu L, Zhang W Y, et al. Radial distribution characteristics of microstructure and mechanical properties of Ti-6Al-4V butt joint by rotary friction welding[J]. Acta Metallurgica Sinica (English letters), 2015, 28(10): 1291 − 1298. doi: 10.1007/s40195-015-0325-6
    [24]
    Cui D C, Wu Q F, Jin F, et al. Heterogeneous deformation behaviors of an inertia friction welded Ti2AlNb joint: an in-situ study[J]. Acta Metallurgica Sinica (English letters), 2023, 36: 611 − 622. doi: 10.1007/s40195-022-01477-5
    [25]
    杜随更, 王喜锋, 高漫. 单晶DD3与细晶GH4169高温合金摩擦焊接界面表征[J]. 金属学报, 2015, 51(8): 951 − 956.

    Du Suigeng, Wang Xifeng, Gao Man. Characteristics of the friction welding interface between single crystal super alloy DD3 and fine grained superalloy GH4169[J]. Acta Metallurgica Sinica, 2015, 51(8): 951 − 956.
    [26]
    Cooper D R, Allwood J M. The influence of deformation conditions in solid-state aluminium welding processes on the resulting weld strength[J]. Journal of Materials Processing Technology, 2014, 214(11): 2576 − 2592. doi: 10.1016/j.jmatprotec.2014.04.018
    [27]
    Shao Z, Cui L, Yang L J, et al. Microstructure and mechanical properties of friction pull plug welding for 2219-T87 aluminum alloy with tungsten inert gas weld[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(6): 1216 − 1224. doi: 10.1007/s12613-020-2222-x
    [28]
    Liang X Y, Wang Z J, Cui L, et al. High-quality friction pull plug welding of AA2219-T87 plate with a thickness of 18 mm: experimental characterization on shaping, microstructure and mechanical properties[J]. Materials Characterization, 2022, 194: 112448. doi: 10.1016/j.matchar.2022.112448
  • Cited by

    Periodical cited type(3)

    1. 秦子濠,李湘文,郑学军,洪波,李继展,周芙蓉. 磁控焊缝跟踪传感器非对称纵向磁场下的焊缝识别. 焊接学报. 2023(05): 84-94+134 . 本站查看
    2. 刘文吉,杨嘉昇,岳建锋,肖宇. 基于P-GMAW摆动电弧传感的窄间隙坡口宽度自适应焊接. 材料科学与工艺. 2023(06): 29-36 .
    3. 钦超,吕学勤,王裕东,瞿艳. 基于激光位移传感器的焊缝检测系统设计. 上海电力学院学报. 2019(02): 171-174 .

    Other cited types(5)

Catalog

    Article views (107) PDF downloads (38) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return