Loading [MathJax]/jax/output/SVG/jax.js
Advanced Search
LIU Xiaoying, WEI Chenghua, HUANG Shuyu, LU Fenggui. Laser ablation behavior subjected to subsonic airflow at different spatial positions[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240407002
Citation: LIU Xiaoying, WEI Chenghua, HUANG Shuyu, LU Fenggui. Laser ablation behavior subjected to subsonic airflow at different spatial positions[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240407002

Laser ablation behavior subjected to subsonic airflow at different spatial positions

More Information
  • Received Date: April 06, 2024
  • Available Online: October 17, 2024
  • In order to study the interaction between laser energy, surface airflow, spatial position and metal materials in the process of laser ablation, a fluid-structure coupled laser ablation model considering the combined action of subsonic tangential flow and spatial position of workpiece to induce melt removal is proposed, and compared with the high-speed image, the rationality of the model is verified.The interaction process between surface airflow and large-scale molten pool and melt peeling off behavior are studied at different spatial positions.It is found that induced by the combined action of airflow and spatial position, on one hand, the melt is pushed out of molten pool to form a tilted liquid column and accelerated to 1.6 m/s or even higher, providing high momentum for the melt to peel away from molten pool, on the other hand, the liquid column is elongated slender to be only 0.45 mm thick, which is easy to overcome the melt surface tension, this cause the melt to peel off and form spatter. Adjusting the metal spatial position and reducing α from 90° to 30°, the component of gravity along the metal surface irradiated by laser is accordingly reduced. The melt flow velocity in the liquid column slows from 1.6 m/s to 1.4 m/s. The size of ablation crater formed by melt peeling off decreased gradually, and the peeling-off degree of molten pool and the metal mass loss are reduced significantly.

  • [1]
    Wang Y, Zhang M Y, Dong Y H, et al. Morphology modelling and validation in nanosecond pulsed laser ablation of metallic materials[J]. Precision Engineering, 2023, 79: 34 − 42. doi: 10.1016/j.precisioneng.2022.08.010
    [2]
    李晗, 章程, 陈杰, 等. SiCf/SiC复合材料激光烧蚀辅助铣削材料去除机理与加工表面质量评价[J]. 机械工程报, 2024, 60(9): 206 − 217.

    Li Han, Zhang Cheng, Chen Jie, et al. Material removal mechanism and evaluation of machined surface quality of SiCf/SiC composites by laser ablation-assisted milling[J]. Journal of Mechanical Engineering, 2024, 60(9): 206 − 217.
    [3]
    Rout S, Panigrahi D, Patel S K. Short pulsed laser ablation of ZA ceramic matrix composite under ancillary environments: A comparative study[J]. Optics & Laser Technology, 2024, 174: 110703.
    [4]
    Wang X Y, Luo Y H. Diameter prediction of removal particles in Al2O3 ceramic laser cutting based on vapor-to-melt ratio[J]. Journal of Materials Processing Technology, 2018, 251: 109 − 117. doi: 10.1016/j.jmatprotec.2017.08.011
    [5]
    Jin X C, Fan X L, Jiang P, et al. Microstructure evolution and ablation mechanism of C/C and C/C-SiC composites under a hypersonic flowing propane torch[J]. Advanced Engineering Materials, 2017, 19(11): 1700239. doi: 10.1002/adem.201700239
    [6]
    Nan P Y, Li X, Pan Y X, et al. Characteristics and influences of plume during CW laser-CFRP interaction under tangential gas flow[J]. Laser Physics, 2020, 30: 076003. doi: 10.1088/1555-6611/ab92a8
    [7]
    Li X, Li M, Liu H J. Enhanced optical absorption surface of titanium fabricated by a femtosecond laser assisted with airflow pressure[J]. Chinese Optics Letters, 2021, 19(9): 091404. doi: 10.3788/COL202119.091404
    [8]
    张明月, 王岩, 董颖怀, 等. 超声振动对于激光烧蚀铝表面形貌研究[J]. 应用激光, 2023, 43(11): 123 − 126.

    Zhang Mingyue, Wang Yan, Dong Yinghuai, et al. Experimental study of ultrasonic vibration on the surface morphology of laser ablated aluminum[J]. Applied Laser, 2023, 43(11): 123 − 126.
    [9]
    伍俊英, 郑富德, 姚雨乐, 等. 气流对飞秒激光加工炸药装药过程的热安全性影响分析[J]. 强激光与粒子束, 2024, 36(1): 107 − 115. doi: 10.11884/HPLPB202436.230256

    Wu Junying, Zheng Fude, Yao Yule, et al. Analysis of thermal safety impact of airflow on the process of femtosecond laser processing explosive charge[J]. High Power Laser and Particle Beams, 2024, 36(1): 107 − 115. doi: 10.11884/HPLPB202436.230256
    [10]
    林键, 刘丽丽, 卢洪波, 等. Ma = 6空气流中涂层材料的激光破坏特性及其流动干扰[J]. 气体物理, 2024, 9(1): 70 − 80.

    Lin Jian, Liu Lili, Lu Hongbo, et al. Laser-induced damage features and flow interference of coating materials in Ma = 6 airflows[J]. Physics of Gases, 2024, 9(1): 70 − 80.
    [11]
    陶彦辉, 张家雷, 张旭平. 气流与激光联合作用铝合金板热响应研究[J]. 激光技术, 2024, 48(4): 603 − 607. doi: 10.7510/jgjs.issn.1001-3806.2024.04.021

    Tao Yanhui, Zhang Jialei, Zhang Xuping. Study on thermal response of aluminum alloy plate subjected to airflow and laser irradiation[J]. Laser Technology, 2024, 48(4): 603 − 607. doi: 10.7510/jgjs.issn.1001-3806.2024.04.021
    [12]
    Robin J E, Nordin P. Enhancement of CW laser melt‐through of opaque solid materials by supersonic transverse gas flow[J]. Applied Physics Letters, 1975, 26(6): 289 − 292. doi: 10.1063/1.88160
    [13]
    Robin J E, Nordin P. Effects of gravitationally induced melt removal on CW laser melt-through of opaque solids[J]. Applied Physics Letters, 1975, 27(11): 593 − 595. doi: 10.1063/1.88325
    [14]
    王伟平, 刘常龄, 王春彦, 等. 切向气流对激光加热材料的影响[J]. 强激光与粒子束, 1996, 8(3): 373 − 377.

    Wang Weiping, Liu Changling, Wang Chunyan, et al. Tangential airflow influence on laser heating materials[J]. High Power Laser and Particle Beams, 1996, 8(3): 373 − 377.
    [15]
    Qin Y, Dai G, Wang B, et al. Investigating the effect of gravity on long pulsed laser drilling[J]. Optics & Laser Technology, 2011, 43: 563 − 569.
    [16]
    袁春, 江厚满, 赵国民. 不同气流环境下氟化氘激光对45#钢靶的辐照效应[J]. 强激光与粒子束, 2015, 27(4): 62 − 67. doi: 10.11884/HPLPB201527.041011

    Yuan Chun, Jiang Houman, Zhao Guomin. 45# steel interaction with DF laser beam in different gas flow[J]. High Power Laser and Particle Beams, 2015, 27(4): 62 − 67. doi: 10.11884/HPLPB201527.041011
    [17]
    Wang J T, Ma Y Z, Liu Y W, et al. Experimental investigation on laser ablation of C/SiC composites subjected to supersonic airflow[J]. Optics and Laser Technology, 2019, 113: 399 − 406. doi: 10.1016/j.optlastec.2019.01.019
    [18]
    Yuan W, Wang J T, Wang R X, et al. Experimental study of the high-power laser resistance of ablative material-filled sandwich panels with truss cores under hypersonic airflow[J]. Composite Structures, 2022, 301: 116139. doi: 10.1016/j.compstruct.2022.116139
    [19]
    杜太焦, 束庆邦, 陈志华, 等. 高速目标激光辐照温升效应仿真研究[J]. 计算机仿真, 2010, 27(4): 271 − 274. doi: 10.3969/j.issn.1006-9348.2010.04.066

    Du Taijiao, Shu Qingbang, Chen Zhihua, et al. Study on the simulation of heating effects of high speed target laser[J]. Computer Simulation, 2010, 27(4): 271 − 274. doi: 10.3969/j.issn.1006-9348.2010.04.066
    [20]
    Chen M S, Jiang H M. Three-dimensional thermal response numerical simulation of laser irradiating simulative warhead target[C]// Proceedings of the Third International Symposium on Laser Interaction with Matter, Jiangsu: SPIE, 2015.
    [21]
    Huang Y H, Song H W, Huang C G. Heat transfer and mode transition for laser ablation subjected to supersonic airflow[J]. Chinese Physics Letters, 2016, 33: 014201. doi: 10.1088/0256-307X/33/1/014201
    [22]
    Xing X D, Ma T, Wang R X, et al. Dynamic rupture of metal sheet subjected to laser irradiation and tangential subsonic airflow[J]. Theoretical & Applied Mechanics Letters, 2018, 8: 272 − 276.
    [23]
    Ma T, Wang J T, Song H W, et al. Instantaneous ablation behavior of laminated CFRP by high-power continuous-wave laser irradiation in supersonic wind tunnel[J]. Materials, 2023, 16(2): 1 − 6. doi: 10.3390/ma16020790
    [24]
    Li Z H, Wang X Y, Luo Y H. Equivalent properties of transition layer based on element distribution in laser bending of 304 stainless steel/q235 carbon steel laminated plate[J]. Materials, 2018, 11(11): 23 − 26.
    [25]
    Zhou S J, Bu H C, Gao Q Y, et al. Effect of power distribution on the temperature evolution in laser-MIG hybrid welding for Q235 steel[J]. Modern Physics Letters B, 2019, 33(32): 1950405. doi: 10.1142/S0217984919504050
    [26]
    Jiang Y C, Cheng Y H, Zhang X C, et al. Simulation and experimental investigations on the effect of marangoni convection on thermal field during laser cladding process[J]. Optik, 2020, 203: 164044. doi: 10.1016/j.ijleo.2019.164044
    [27]
    Yang J H, Aiyiti W, Jiang H F, et al. Evolution of molten pool morphology and prediction of inclined cladding layer morphology[J]. Optics and Laser Technology, 2021, 142: 107164. doi: 10.1016/j.optlastec.2021.107164
    [28]
    高向东, 冯燕柱, 桂晓燕, 等. 激光入射角影响焊接熔池匙孔瞬态行为数值模拟[J]. 机械工程学报, 2020, 56(22): 82 − 89. doi: 10.3901/JME.2020.22.082

    Gao Xiangdong, Feng Yanzhu, Gui Xiaoyan, et al. Numerical simulation of effects of laser incident angle on transient behaviors of molten pool and keyhole during laser welding[J]. Journal of Mechanical Engineering, 2020, 56(22): 82 − 89. doi: 10.3901/JME.2020.22.082
    [29]
    Nan P Y, Shen Z H, Han B, et al. The influences of laminated structure on the ablation characteristics of carbon fiber composites under CW laser irradiation[J]. Optics and Laser Technology, 2019, 116: 224 − 231. doi: 10.1016/j.optlastec.2019.03.015
    [30]
    丛家慧, 高嘉元, 周松, 等. TC4激光焊接热力耦合数值模拟及力学性能分析[J]. 焊接学报, 2024, 45(6): 77 − 88. doi: 10.12073/j.hjxb.20230315001

    Cong Jiahui, Gao Jiayuan, Zhou Song, et al. Thermodynamic coupling numerical simulation and mechanical properties analysis of TC4 laser welding[J]. Transactions of the China Welding Institution, 2024, 45(6): 77 − 88. doi: 10.12073/j.hjxb.20230315001
    [31]
    彭进, 许红巧, 王星星, 等. 激光焊接过程的熔池动态行为研究[J]. 焊接学报, 2023, 44(11): 1 − 7. doi: 10.12073/j.hjxb.20221220001

    Peng Jin, Xu Hongqiao, Wang Xingxing, et al. Study on the dynamic behavior of molten pool in laser welding process[J]. Transactions of the China Welding Institution, 2023, 44(11): 1 − 7. doi: 10.12073/j.hjxb.20221220001
    [32]
    Fan X C, Qin G L, Jiang Z L, et al. Comparative analysis between the laser beam welding and low current pulsed GMA assisted high-power laser welding by numerical simulation[J]. Journal of Materials Research and Technology, 2023, 22: 2549 − 2565. doi: 10.1016/j.jmrt.2022.12.116
    [33]
    梁平华, 唐倩, 冯琪翔, 等. 激光选区熔化单道扫描与搭接数值模拟及试验[J]. 机械工程学报, 2020, 56(22): 56 − 67. doi: 10.3901/JME.2020.22.056

    Liang Pinghua, Tang Qian, Feng Qixiang, et al. Numerical simulation and experiment of single track scanning and lapping in selective laser melting[J]. Journal of Mechanical Engineering, 2020, 56(22): 56 − 67. doi: 10.3901/JME.2020.22.056
    [34]
    Wang X F, Lu M, Gao J Q. Numerical simulation for dynamic behavior of weld pool and fusion hole in TIG welding with gap[J]. Welding in the World, 2021, 65: 2421 − 2435. doi: 10.1007/s40194-021-01188-y
    [35]
    Tomashchuk I, Sallamand P, Jouvard J M. The modeling of dissimilar welding of immiscible materials by using a phase field method[J]. Applied Mathematics and Computation, 2013, 219: 7103 − 7114. doi: 10.1016/j.amc.2012.01.039
    [36]
    Bruyere V, Touvrey C, Namy P. A phase field approach to model laser power control in spot laser welding[C]// Proceedings of the 2014 COMSOL Conference, Cambridge: COMSOL, 2014.
  • Related Articles

    [1]SUN Jiamin, CAI Jianpeng, YE Yanhong, Deng Dean. Numerical simulation of electro slag welding temperature field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 93-96.
    [2]WEI Yanhong, ZHAN Xiaohong, DONG Zhibo, MA Rui, WANG Yong. Simulation of microstructure during weld solidification based on cellular automaton[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (3): 13-16.
    [3]HUANG Anguo, YU Shengfu, LI Zhiyuan. Simulation on weld metal solidifying microstructure with cellular automaton[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 45-48.
    [4]WANG Jianmin, ZHU Xi, LIU Runquan. Three dimensional numerical simulation for explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (5): 109-112.
    [5]ZHAO Yan-hua, LIN San-bao, HE Zi-qiu, WU Lin. Numerical simulation of 3D friction stir welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 75-78.
    [6]LIU Wang-lan, HU Sheng-sun, MA Li. Numerical simulation of fluid flow field in plasma arc welding with 3-D static conical heat source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 33-36.
    [7]WU Yan-gao, LI Wu-shen, ZOU Hong-jun, FENG Ling-zhi. State-of-the-art of Numerical Simulation In Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 89-92.
    [8]ZHANG Xian-hui, TAN Chang-ying, CHEN Pei-yin. Numerical Simulation of Hydrogen Diffusion in Welded Joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 51-54.
    [9]Li Liangyu, Geng Zheng, Chen Shujun, et al. Numerical Simulation of Penetration Process Based on Heat Transfer Condition Variation of Workpiece in the Arc Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (1): 57-59.
    [10]Wang Jianhua, Zhong Xiaomin, Qi Xinhai. 3-D numerical simulation of deformations in pipe-plate joint with holes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (3): 140-145.

Catalog

    Article views (21) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return