Advanced Search
LYU Ke, YANG Bing, WANG Shuancheng, XIAO Shoune, YANG Guangwu, ZHU Tao. Crack propagation behavior of laser-MIG hybrid welded joints in 6005 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 82-93. DOI: 10.12073/j.hjxb.20240125004
Citation: LYU Ke, YANG Bing, WANG Shuancheng, XIAO Shoune, YANG Guangwu, ZHU Tao. Crack propagation behavior of laser-MIG hybrid welded joints in 6005 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 82-93. DOI: 10.12073/j.hjxb.20240125004

Crack propagation behavior of laser-MIG hybrid welded joints in 6005 aluminum alloy

More Information
  • Received Date: January 24, 2024
  • Available Online: April 18, 2025
  • The fatigue crack propagation behavior of laser-MIG hybrid welded joints in 6005A-T6 aluminum alloy is studied. Digital image correlation (DIC) technology is employed to capture the local displacement field near the crack tip during testing, enabling a comparative analysis of crack closure effects between welded joints and base material. The results show that the fatigue crack propagation rates in the laser-MIG hybrid weld specimens are initially comparable to those in the base material specimens but accelerate significantly in later stages. In contrast, the heat-affected zone specimens exhibit notably lower crack propagation rates. A 4% compliance offset value is selected to determine the crack opening force. All specimens follow the general trend of increasing crack closure factor U with crack propagation. Specifically, the crack closure level in the laser-MIG hybrid weld specimens first decreases and then gradually rises to that in the base material specimens, whereas the crack closure level in the heat-affected zone specimens is initially slightly lower than that in the base material specimens but exceeds that in the base material specimens in later stages without convergence. The Elber equation is applied to correct crack propagation data to eliminate the influence of crack closure on the propagation rate. However, the dispersion of crack propagation data remains largely unchanged before and after correction, indicating that crack closure effects alone cannot fully explain the fatigue crack propagation behavior of joints.

  • [1]
    ZHANG Z, HUANG M, YANG L, et al. Investigation of fatigue crack growth behavior and crack tip plastic zone characteristics in welded structures based on local displacement fields[J]. Engineering Fracture Mechanics, 2024, 308: 110375. doi: 10.1016/j.engfracmech.2024.110375
    [2]
    VERMA R P, LILA M K. A short review on aluminium alloys and welding in structural applications[J]. Materials Today, 2021, 46(20): 10687 − 10691.
    [3]
    周希孺,吴圣川,郭峰. 现代铁道车辆结构伤损形式与再制造修复技术[J]. 电焊机, 2020, 50(9): 147 − 160.

    ZHOU Xiru, WU Shengchuan, GUO Feng. Typical defects and remanufacturing & repairing technologies of modern railway vehicle components[J]. Electric Welding Machine, 2020, 50(9): 147 − 160.
    [4]
    YAN S H, NIE Y, ZHU Z T, et al. Characteristics of microstructure and fatigue resistance of hybrid fiber laser-MIG welded Al-Mg alloy joints[J]. Applied Surface Science, 2014, 298: 12 − 18.
    [5]
    NIRAULA A, REMES H, LEHTO P. Local weld geometry-based characterization of fatigue strength in laser-MAG hybrid welded joints[J]. Welding in The World, 2023, 67(6): 1527 − 1544.
    [6]
    HUANG G, LI Z H, SUN L M, et al. Fatigue crack growth behavior of 2624-T39 aluminum alloy with different grain sizes[J]. Rare Metals, 2021, 40(9): 2523 − 2529.
    [7]
    KUMAR P, SINGH A. Experimental and numerical investigations of fatigue and fracture performance of metal inert gas-welded Al-3. 4 Mg aluminium alloy[J]. Journal of The Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(9): 1 − 20.
    [8]
    周书蔚, 杨冰, 王超, 等. 机器学习法预测不同应力比6005A-T6铝合金疲劳裂纹扩展速率[J]. 中国有色金属学报, 2023, 33(8): 2416 − 2427. doi: 10.11817/j.ysxb.1004.0609.2022-43508

    ZHOU Shuwei, YANG Bing, WANG Chao, et al. Prediction of fatigue crack extension rate of 6005A-T6 aluminum alloy with different stress ratios by machine learning method[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(8): 2416 − 2427. doi: 10.11817/j.ysxb.1004.0609.2022-43508
    [9]
    ZHOU S, YANG B, LYU K, et al. Elastic-plastic simulation study on 6005a aluminum alloy crack propagation based on XFEM[J]. International Journal of Applied Mechanics, 2025, 17(1): 2450126. doi: 10.1142/S1758825124501266
    [10]
    李文瀚, 孙尧, 张浩, 等. 试验速率对6005A-T6铝合金力学性能的影响[J]. 有色金属加工, 2022, 51(3): 21 − 24. doi: 10.3969/j.issn.1671-6795.2022.03.005

    LI Wenhan, SUN Yao, ZHANG Hao, et al. Effect of test rate on mechanical properties of 6005A-T6 aluminum alloy[J]. Nonferrous Metals Processing, 2022, 51(3): 21 − 24. doi: 10.3969/j.issn.1671-6795.2022.03.005
    [11]
    WANG X, ZHU T, LU L, et al. Rate-dependent damage sequence interaction model for predicting the mechanical property of in-service aluminum alloy 6005A-T6[J]. Mechanics of Materials, 2024, 191: 104959. doi: 10.1016/j.mechmat.2024.104959
    [12]
    AQEEL M, GAUTAM J P, SHARIFF S M. Comparative study on autogenous diode laser, CO2 laser-MIG hybrid and multi-pass TIG welding of 10-mm thick Inconel 617 superalloy[J]. Materials Science and Engineering A, 2022, 856: 143967. doi: 10.1016/j.msea.2022.143967
    [13]
    罗子艺, 韩善果, 陈永城,等. 工艺参数对激光-电弧复合焊缝成形及拉伸性能的影响[J]. 材料导报, 2019, 33(13): 2146 − 2150.

    LUO Ziyi, HAN Shanguo, CHEN Yongcheng, et al. Effects of process parameters on weld formation and tensile properties of hybrid laser-arc welding[J]. Materials Reports, 2019, 33(13): 2146 − 2150.
    [14]
    MENG X, YANG S L, HUANG Y B, el al. Microstructure characterization and mechanism of fatigue crack propagation of 6082 aluminum alloy joints[J]. Materials Chemistry and Physics, 2021, 257: 123734.
    [15]
    JIAN H, WANG Y D, YANG X M, et al. Microstructure and fatigue crack growth behavior in welding joint of Al-Mg alloy[J]. Engineering Failure Analysis, 2021, 120: 105034. doi: 10.1016/j.engfailanal.2020.105034
    [16]
    ZHANG Z, YANG B, JAMES M N, et al. Evolution of residual stress at a fatigue crack tip and its influence on crack tip shielding and plasticity[J]. Journal of Materials Research and Technology, 2024, 32: 1749 − 1760. doi: 10.1016/j.jmrt.2024.08.032
    [17]
    MA M, LAI R L, QIN J , et al. Effect of weld reinforcement on tensile and fatigue properties of 5083 aluminum metal inert gas (MIG) welded joint: experiments and numerical simulations[J]. International Journal of Fatigue, 2021, 144: 106046. doi: 10.1016/j.ijfatigue.2020.106046

Catalog

    Article views (43) PDF downloads (28) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return