Advanced Search
ZHANG Zhiyong, LI Ruoyu, GUO Xuanming, SHI Ruxing, YU Xingsheng, XU Jijin, LI Zhimin. Analysis of the Strength and toughness of welded joints in ultra high strength steel with a step-cooling laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 112-119. DOI: 10.12073/j.hjxb.20231205002
Citation: ZHANG Zhiyong, LI Ruoyu, GUO Xuanming, SHI Ruxing, YU Xingsheng, XU Jijin, LI Zhimin. Analysis of the Strength and toughness of welded joints in ultra high strength steel with a step-cooling laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 112-119. DOI: 10.12073/j.hjxb.20231205002

Analysis of the Strength and toughness of welded joints in ultra high strength steel with a step-cooling laser welding

More Information
  • Received Date: December 04, 2023
  • Available Online: February 26, 2025
  • To address the strength-toughness mismatch in ultra-high strength steel welded joints, a step-cooling process inspired by the Quenching and Partitioning (Q&P) principle was proposed and its impact on the mechanical properties of welded joints was investigated. The step-cooling system was designed using welding numerical simulation methods and integrated with existing laser welding equipment. The conventional laser welding tests and the step-cooling laser welding tests were conducted on ultra-high strength steel. The influence of step-cooling laser welding process on the mechanical properties of welded joints was compared and analyzed. Additionally, the strengthening-toughening mechanism of step-cooling laser welded joints was elucidated. Results demonstrate that compared to conventional laser welding, the step-cooling laser welding reduces the width of various joint zones while enhancing yield strength by 5.8%, increasing tensile strength by 4.9%, and improving toughness by approximately 6.8%. This improvement primarily stems from accelerated cooling rates during the step-cooling process, which refine prior austenite grains and produce finer/narrower lath martensite, thereby enhancing joint strength. Moreover, the self-partitioning effect increases retained austenite content, inducing transformation-induced plasticity (TRIP) effect that contributes to toughness enhancement.

  • [1]
    Ritchie R O. The conflicts between strength and toughness[J]. Nature Materials, 2011, 10(11): 817 − 822. doi: 10.1038/nmat3115
    [2]
    Wei Y, Li Y, Zhu L, et al. Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins[J]. Nature Communications, 2014, 5(1): 3580. doi: 10.1038/ncomms4580
    [3]
    Niu M, Yang K, Luan J, et al. Cu-assisted austenite reversion and enhanced TRIP effect in maraging stainless steels[J]. Journal of Materials Science & Technology, 2022, 104: 52 − 58.
    [4]
    Gouné M, Aoued S, Danoix F, et al. Alloying-element interactions with austenite/martensite interface during quenching and partitioning of a model Fe-C-Mn-Si alloy[J]. Scripta Materialia, 2019, 162: 181 − 184. doi: 10.1016/j.scriptamat.2018.11.012
    [5]
    Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611 − 2622. doi: 10.1016/S1359-6454(03)00059-4
    [6]
    Clarke A, Speer J, Miller M K, et al. Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment[J]. Acta Materialia, 2008, 56(1): 16 − 22. doi: 10.1016/j.actamat.2007.08.051
    [7]
    Lv L, Fu L, Ahmad S, et al. Effect of heavy warm rolling on microstructures and mechanical properties of AISI 4140 steel[J]. Materials Science and Engineering: A, 2017, 704: 469 − 479. doi: 10.1016/j.msea.2017.07.089
    [8]
    Lv L, Fu L, Sun Y, et al. An investigation on the microstructure and mechanical properties in an ultrafine lamellar martensitic steel processed by heavy warm rolling and tempering[J]. Materials Science and Engineering: A, 2018, 731: 369 − 376. doi: 10.1016/j.msea.2018.06.073
    [9]
    Kim H, Lee J, Kim T, et al. Mechanical behavior of Cu54Ni6Zr22Ti18 bulk amorphous alloy during multi-pass warm rolling[J]. Materials Science and Engineering: A, 2007, 449: 929 − 933.
    [10]
    Inoue T, Yin F, Kimura Y. Strain distribution and microstructural evolution in multi-pass warm caliber rolling[J]. Materials Science and Engineering: A, 2007, 466(1-2): 114 − 122. doi: 10.1016/j.msea.2007.02.098
    [11]
    Huang C, Huang M. Effect of processing parameters on mechanical properties of deformed and partitioned (D&P) medium Mn steels[J]. Metals, 2021, 11(2): 356. doi: 10.3390/met11020356
    [12]
    李少峰, 马成勇, 宋志刚, 等. 800 MPa级高强钢焊接接头组织及力学性能[J]. 焊接学报, 2020, 41(5): 91 − 96. doi: 10.12073/j.hjxb.20190115005

    Li Shaofeng, Ma Chengyong, Song Zhigang, et al. Study on the welding joint microstructure and mechanical properties of 800 MPa grade high stress steel[J]. Transactions of The China Welding Institution, 2020, 41(5): 91 − 96. doi: 10.12073/j.hjxb.20190115005
    [13]
    Farren J D, Hunter A H, Dupont J N, et al. Microstructural evolution and mechanical properties of fusion welds in an iron-copper-based multicomponent steel[J]. Metallurgical and Materials Transactions A, 2012, 43: 4155 − 4170. doi: 10.1007/s11661-012-1249-7
    [14]
    Zhou G, Huang T, Guo Y, et al. Research on microstructure and properties of boron/Q235 steel laser welded dissimilar joints under synchronous thermal field[J]. China Welding, 2023, 32(4): 38 − 48.
    [15]
    鲍亮亮, 王勇, 张洪杰, 等. EQ70钢激光电弧复合焊焊接热循环及其对热影响区组织演变的影响[J]. 焊接学报, 2021, 42(3): 26 − 33. doi: 10.12073/j.hjxb.20201207002

    Bao Liangliang, Wang Yong, Zhang Hongjie, et al. Welding thermal cycle of the laser-arc hybrid welding of the EQ70 steel and its effects on the microstructure evolution of the heat affected zone[J]. Transactions of the China Welding Institution, 2021, 42(3): 26 − 33. doi: 10.12073/j.hjxb.20201207002
    [16]
    李洪梅, 孙大千, 王文权, 等. 奥氏体不锈钢丝激光焊接头的组织与力学性能[J]. 焊接学报, 2009, 30(6): 71 − 74. doi: 10.3321/j.issn:0253-360X.2009.06.018

    Li Hongmei, Sun Daqian, Wang Wenquan, et al. Microstructure and mechanical properties of austenite stainless steel wire joints welded by laser[J]. Transactions of the China Welding Institution, 2009, 30(6): 71 − 74. doi: 10.3321/j.issn:0253-360X.2009.06.018
    [17]
    Wang X L, Wang X M, Shang C J, et al. Characterization of the multi-pass weld metal and the impact of retained austenite obtained through intercritical heat treatment on low temperature toughness[J]. Materials Science and Engineering: A, 2016, 649: 282 − 292. doi: 10.1016/j.msea.2015.09.030
    [18]
    Shi G, Zhao H, Zhang S, et al. Microstructural characteristics and impact fracture behaviors of low-carbon vanadium-microalloyed steel with different nitrogen contents[J]. Materials Science and Engineering: A, 2020, 769: 138501. doi: 10.1016/j.msea.2019.138501
    [19]
    Seo E J, Cho L, Kim J K, et al. Constituent-specific properties in quenching and partitioning (Q&P) processed steel[J]. Materials Science and Engineering: A, 2019, 740: 439 − 444.
    [20]
    Guo X, Liu S, Xu J, et al. Effect of step cooling process on microstructures and mechanical properties in thermal simulated CGHAZ of an ultra-high strength steel[J]. Materials Science and Engineering: A, 2021, 824: 141827. doi: 10.1016/j.msea.2021.141827
    [21]
    Renard K, Idrissi H, Schryvers D, et al. On the stress state dependence of the twinning rate and work hardening in twinning-induced plasticity steels[J]. Scripta Materialia, 2012, 66(12): 966 − 971. doi: 10.1016/j.scriptamat.2012.01.063
    [22]
    De A, Walsh C, Maiti S, et al. Prediction of cooling rate and microstructure in laser spot welds[J]. Science and Technology of Welding and Joining, 2003, 8(6): 391 − 399. doi: 10.1179/136217103225005633
    [23]
    Feng J, Frankenbach T, Wettlaufer M. Strengthening 42CrMo4 steel by isothermal transformation below martensite start temperature[J]. Materials Science and Engineering: A, 2017, 683: 110 − 115. doi: 10.1016/j.msea.2016.12.013
    [24]
    高燕. 不锈钢激光焊接热源及过程的模拟与仿真 [D]. 天津: 天津大学, 2006.

    Gao Yan. The simulation of heat source and process in laser welding for stainless steel [D]. Tianjin : Tianjin University, 2006.
    [25]
    Tsirkas S, Papanikos P, Kermanidis T. Numerical simulation of the laser welding process in butt-joint specimens[J]. Journal of materials processing technology, 2003, 134(1): 59 − 69. doi: 10.1016/S0924-0136(02)00921-4
    [26]
    Xu J, Chen J, Duan Y, et al. Comparison of residual stress induced by TIG and LBW in girth weld of AISI 304 stainless steel pipes[J]. Journal of Materials Processing Technology, 2017, 248: 178 − 184. doi: 10.1016/j.jmatprotec.2017.05.014
    [27]
    Haiko O, Javaheri V, Valtonen K, et al. Effect of prior austenite grain size on the abrasive wear resistance of ultra-high strength martensitic steels[J]. Wear, 2020, 454: 203336.
    [28]
    Revesz A, Ungár T, Borbély A, et al. Dislocations and grain size in ball-milled iron powder[J]. Nanostructured Materials, 1996, 7(7): 779 − 788. doi: 10.1016/S0965-9773(96)00048-7
    [29]
    Lambert Perlade A, Gourgues A F, Pineau A. Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel[J]. Acta Materialia, 2004, 52(8): 2337 − 2348. doi: 10.1016/j.actamat.2004.01.025
    [30]
    Hao Q, Qin S, Liu Y, et al. Effect of retained austenite on the dynamic tensile behavior of a novel quenching-partitioning-tempering martensitic steel[J]. Materials Science and Engineering: A, 2016, 662: 16 − 25. doi: 10.1016/j.msea.2016.03.007
  • Related Articles

    [1]WAN Yu, ZHANG Xuyang, JIANG Wenchun, ZHANG Baisheng, LEI Chenglong, LI Zhijie. Degradation behavior and mechanisms of strength and toughness in double-wire narrow-gap submerged arc welded joints of 2.25Cr-1Mo-0.25V steel thick plates for hydrogenation reactors[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(5): 113-120. DOI: 10.12073/j.hjxb.20240706001
    [2]ZHOU Guangtao, KUANG Jingzhen, WEN Qiuling, CAI Zupeng, SU Liji. Microstructure and property of copper laser welding joint assisted by the surface pretreated by nanosecond laser direct writing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 21-29. DOI: 10.12073/j.hjxb.20220908002
    [3]LIU Xinquan, FANG Chao, LIU Jin, SONG Kuijing, JI Yukai, WEI Yong, LUO Junrui. Microstructure analysis of additive manufacturing produced RAFM steel laser welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 44-49. DOI: 10.12073/j.hjxb.20211213003
    [4]TENG Bin, WU Pengbo, LI Xiaoguang, ZOU Jipeng, WANG Shiyang, CHEN Xiaoyu, JIA Lichao. Microstructure and properties of GH3128 alloy laser welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 82-87. DOI: 10.12073/j.hjxb.20220406001
    [5]CUI Li, LI Xiaoyan, HE Dingyong, CHEN Li, GONG Shuili. Microstructure investigation of Nd:YAG laser welded 5A90 aluminium-lithium alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (9): 77-80,84.
    [6]LI Hongmei, SUN Daqian, WANG Wenquan, XUAN Zhaozhi, REN Zhenan. Microstructure and mechanical properties of austenite stainless steel wire joints welded by laser[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 71-74.
    [7]ZHANG Min, YAO Cheng-wu, LIU Bin, LI Ji-hong. Agglomerated alkali flux for submerged arc welding of high strength-toughness steel X80[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (10): 29-32.
    [8]WEN Peng, ZHANG Xu-dong, CHEN Wu-zhu, Henry Peng. Buckling distortion of laser welded thin plates and its control by dynamic cooling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 99-102.
    [9]YU Sheng-fu, ZHANG You-shou, LEI Yi, XIE Zhi-qiang, WU Dong-zhou, LIU Ping. Mechanisms of rotational magnetic field stirring of laser welded nonmagnetic alloy for laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 109-112.
    [10]HAN Guo-ming, LI Jian-qiang, YAN Qing-liang. Modeling and simulating of temperature field of laser welding for stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 105-108.

Catalog

    Article views (33) PDF downloads (17) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return