Citation: | ZHANG Zhiyong, LI Ruoyu, GUO Xuanming, SHI Ruxing, YU Xingsheng, XU Jijin, LI Zhimin. Analysis of the Strength and toughness of welded joints in ultra high strength steel with a step-cooling laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 112-119. DOI: 10.12073/j.hjxb.20231205002 |
To address the strength-toughness mismatch in ultra-high strength steel welded joints, a step-cooling process inspired by the Quenching and Partitioning (Q&P) principle was proposed and its impact on the mechanical properties of welded joints was investigated. The step-cooling system was designed using welding numerical simulation methods and integrated with existing laser welding equipment. The conventional laser welding tests and the step-cooling laser welding tests were conducted on ultra-high strength steel. The influence of step-cooling laser welding process on the mechanical properties of welded joints was compared and analyzed. Additionally, the strengthening-toughening mechanism of step-cooling laser welded joints was elucidated. Results demonstrate that compared to conventional laser welding, the step-cooling laser welding reduces the width of various joint zones while enhancing yield strength by 5.8%, increasing tensile strength by 4.9%, and improving toughness by approximately 6.8%. This improvement primarily stems from accelerated cooling rates during the step-cooling process, which refine prior austenite grains and produce finer/narrower lath martensite, thereby enhancing joint strength. Moreover, the self-partitioning effect increases retained austenite content, inducing transformation-induced plasticity (TRIP) effect that contributes to toughness enhancement.
[1] |
Ritchie R O. The conflicts between strength and toughness[J]. Nature Materials, 2011, 10(11): 817 − 822. doi: 10.1038/nmat3115
|
[2] |
Wei Y, Li Y, Zhu L, et al. Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins[J]. Nature Communications, 2014, 5(1): 3580. doi: 10.1038/ncomms4580
|
[3] |
Niu M, Yang K, Luan J, et al. Cu-assisted austenite reversion and enhanced TRIP effect in maraging stainless steels[J]. Journal of Materials Science & Technology, 2022, 104: 52 − 58.
|
[4] |
Gouné M, Aoued S, Danoix F, et al. Alloying-element interactions with austenite/martensite interface during quenching and partitioning of a model Fe-C-Mn-Si alloy[J]. Scripta Materialia, 2019, 162: 181 − 184. doi: 10.1016/j.scriptamat.2018.11.012
|
[5] |
Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611 − 2622. doi: 10.1016/S1359-6454(03)00059-4
|
[6] |
Clarke A, Speer J, Miller M K, et al. Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment[J]. Acta Materialia, 2008, 56(1): 16 − 22. doi: 10.1016/j.actamat.2007.08.051
|
[7] |
Lv L, Fu L, Ahmad S, et al. Effect of heavy warm rolling on microstructures and mechanical properties of AISI 4140 steel[J]. Materials Science and Engineering: A, 2017, 704: 469 − 479. doi: 10.1016/j.msea.2017.07.089
|
[8] |
Lv L, Fu L, Sun Y, et al. An investigation on the microstructure and mechanical properties in an ultrafine lamellar martensitic steel processed by heavy warm rolling and tempering[J]. Materials Science and Engineering: A, 2018, 731: 369 − 376. doi: 10.1016/j.msea.2018.06.073
|
[9] |
Kim H, Lee J, Kim T, et al. Mechanical behavior of Cu54Ni6Zr22Ti18 bulk amorphous alloy during multi-pass warm rolling[J]. Materials Science and Engineering: A, 2007, 449: 929 − 933.
|
[10] |
Inoue T, Yin F, Kimura Y. Strain distribution and microstructural evolution in multi-pass warm caliber rolling[J]. Materials Science and Engineering: A, 2007, 466(1-2): 114 − 122. doi: 10.1016/j.msea.2007.02.098
|
[11] |
Huang C, Huang M. Effect of processing parameters on mechanical properties of deformed and partitioned (D&P) medium Mn steels[J]. Metals, 2021, 11(2): 356. doi: 10.3390/met11020356
|
[12] |
李少峰, 马成勇, 宋志刚, 等. 800 MPa级高强钢焊接接头组织及力学性能[J]. 焊接学报, 2020, 41(5): 91 − 96. doi: 10.12073/j.hjxb.20190115005
Li Shaofeng, Ma Chengyong, Song Zhigang, et al. Study on the welding joint microstructure and mechanical properties of 800 MPa grade high stress steel[J]. Transactions of The China Welding Institution, 2020, 41(5): 91 − 96. doi: 10.12073/j.hjxb.20190115005
|
[13] |
Farren J D, Hunter A H, Dupont J N, et al. Microstructural evolution and mechanical properties of fusion welds in an iron-copper-based multicomponent steel[J]. Metallurgical and Materials Transactions A, 2012, 43: 4155 − 4170. doi: 10.1007/s11661-012-1249-7
|
[14] |
Zhou G, Huang T, Guo Y, et al. Research on microstructure and properties of boron/Q235 steel laser welded dissimilar joints under synchronous thermal field[J]. China Welding, 2023, 32(4): 38 − 48.
|
[15] |
鲍亮亮, 王勇, 张洪杰, 等. EQ70钢激光电弧复合焊焊接热循环及其对热影响区组织演变的影响[J]. 焊接学报, 2021, 42(3): 26 − 33. doi: 10.12073/j.hjxb.20201207002
Bao Liangliang, Wang Yong, Zhang Hongjie, et al. Welding thermal cycle of the laser-arc hybrid welding of the EQ70 steel and its effects on the microstructure evolution of the heat affected zone[J]. Transactions of the China Welding Institution, 2021, 42(3): 26 − 33. doi: 10.12073/j.hjxb.20201207002
|
[16] |
李洪梅, 孙大千, 王文权, 等. 奥氏体不锈钢丝激光焊接头的组织与力学性能[J]. 焊接学报, 2009, 30(6): 71 − 74. doi: 10.3321/j.issn:0253-360X.2009.06.018
Li Hongmei, Sun Daqian, Wang Wenquan, et al. Microstructure and mechanical properties of austenite stainless steel wire joints welded by laser[J]. Transactions of the China Welding Institution, 2009, 30(6): 71 − 74. doi: 10.3321/j.issn:0253-360X.2009.06.018
|
[17] |
Wang X L, Wang X M, Shang C J, et al. Characterization of the multi-pass weld metal and the impact of retained austenite obtained through intercritical heat treatment on low temperature toughness[J]. Materials Science and Engineering: A, 2016, 649: 282 − 292. doi: 10.1016/j.msea.2015.09.030
|
[18] |
Shi G, Zhao H, Zhang S, et al. Microstructural characteristics and impact fracture behaviors of low-carbon vanadium-microalloyed steel with different nitrogen contents[J]. Materials Science and Engineering: A, 2020, 769: 138501. doi: 10.1016/j.msea.2019.138501
|
[19] |
Seo E J, Cho L, Kim J K, et al. Constituent-specific properties in quenching and partitioning (Q&P) processed steel[J]. Materials Science and Engineering: A, 2019, 740: 439 − 444.
|
[20] |
Guo X, Liu S, Xu J, et al. Effect of step cooling process on microstructures and mechanical properties in thermal simulated CGHAZ of an ultra-high strength steel[J]. Materials Science and Engineering: A, 2021, 824: 141827. doi: 10.1016/j.msea.2021.141827
|
[21] |
Renard K, Idrissi H, Schryvers D, et al. On the stress state dependence of the twinning rate and work hardening in twinning-induced plasticity steels[J]. Scripta Materialia, 2012, 66(12): 966 − 971. doi: 10.1016/j.scriptamat.2012.01.063
|
[22] |
De A, Walsh C, Maiti S, et al. Prediction of cooling rate and microstructure in laser spot welds[J]. Science and Technology of Welding and Joining, 2003, 8(6): 391 − 399. doi: 10.1179/136217103225005633
|
[23] |
Feng J, Frankenbach T, Wettlaufer M. Strengthening 42CrMo4 steel by isothermal transformation below martensite start temperature[J]. Materials Science and Engineering: A, 2017, 683: 110 − 115. doi: 10.1016/j.msea.2016.12.013
|
[24] |
高燕. 不锈钢激光焊接热源及过程的模拟与仿真 [D]. 天津: 天津大学, 2006.
Gao Yan. The simulation of heat source and process in laser welding for stainless steel [D]. Tianjin : Tianjin University, 2006.
|
[25] |
Tsirkas S, Papanikos P, Kermanidis T. Numerical simulation of the laser welding process in butt-joint specimens[J]. Journal of materials processing technology, 2003, 134(1): 59 − 69. doi: 10.1016/S0924-0136(02)00921-4
|
[26] |
Xu J, Chen J, Duan Y, et al. Comparison of residual stress induced by TIG and LBW in girth weld of AISI 304 stainless steel pipes[J]. Journal of Materials Processing Technology, 2017, 248: 178 − 184. doi: 10.1016/j.jmatprotec.2017.05.014
|
[27] |
Haiko O, Javaheri V, Valtonen K, et al. Effect of prior austenite grain size on the abrasive wear resistance of ultra-high strength martensitic steels[J]. Wear, 2020, 454: 203336.
|
[28] |
Revesz A, Ungár T, Borbély A, et al. Dislocations and grain size in ball-milled iron powder[J]. Nanostructured Materials, 1996, 7(7): 779 − 788. doi: 10.1016/S0965-9773(96)00048-7
|
[29] |
Lambert Perlade A, Gourgues A F, Pineau A. Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel[J]. Acta Materialia, 2004, 52(8): 2337 − 2348. doi: 10.1016/j.actamat.2004.01.025
|
[30] |
Hao Q, Qin S, Liu Y, et al. Effect of retained austenite on the dynamic tensile behavior of a novel quenching-partitioning-tempering martensitic steel[J]. Materials Science and Engineering: A, 2016, 662: 16 − 25. doi: 10.1016/j.msea.2016.03.007
|
[1] | WAN Yu, ZHANG Xuyang, JIANG Wenchun, ZHANG Baisheng, LEI Chenglong, LI Zhijie. Degradation behavior and mechanisms of strength and toughness in double-wire narrow-gap submerged arc welded joints of 2.25Cr-1Mo-0.25V steel thick plates for hydrogenation reactors[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(5): 113-120. DOI: 10.12073/j.hjxb.20240706001 |
[2] | ZHOU Guangtao, KUANG Jingzhen, WEN Qiuling, CAI Zupeng, SU Liji. Microstructure and property of copper laser welding joint assisted by the surface pretreated by nanosecond laser direct writing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 21-29. DOI: 10.12073/j.hjxb.20220908002 |
[3] | LIU Xinquan, FANG Chao, LIU Jin, SONG Kuijing, JI Yukai, WEI Yong, LUO Junrui. Microstructure analysis of additive manufacturing produced RAFM steel laser welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 44-49. DOI: 10.12073/j.hjxb.20211213003 |
[4] | TENG Bin, WU Pengbo, LI Xiaoguang, ZOU Jipeng, WANG Shiyang, CHEN Xiaoyu, JIA Lichao. Microstructure and properties of GH3128 alloy laser welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 82-87. DOI: 10.12073/j.hjxb.20220406001 |
[5] | CUI Li, LI Xiaoyan, HE Dingyong, CHEN Li, GONG Shuili. Microstructure investigation of Nd:YAG laser welded 5A90 aluminium-lithium alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (9): 77-80,84. |
[6] | LI Hongmei, SUN Daqian, WANG Wenquan, XUAN Zhaozhi, REN Zhenan. Microstructure and mechanical properties of austenite stainless steel wire joints welded by laser[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 71-74. |
[7] | ZHANG Min, YAO Cheng-wu, LIU Bin, LI Ji-hong. Agglomerated alkali flux for submerged arc welding of high strength-toughness steel X80[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (10): 29-32. |
[8] | WEN Peng, ZHANG Xu-dong, CHEN Wu-zhu, Henry Peng. Buckling distortion of laser welded thin plates and its control by dynamic cooling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 99-102. |
[9] | YU Sheng-fu, ZHANG You-shou, LEI Yi, XIE Zhi-qiang, WU Dong-zhou, LIU Ping. Mechanisms of rotational magnetic field stirring of laser welded nonmagnetic alloy for laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 109-112. |
[10] | HAN Guo-ming, LI Jian-qiang, YAN Qing-liang. Modeling and simulating of temperature field of laser welding for stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 105-108. |