Advanced Search
ZHU Ming, QI Xiangang, ZHANG Zongzhi, SHI Yu. Laser-induced pre-placed copper layer titanium-steel joint forming and microstructure research[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 18-26, 88. DOI: 10.12073/j.hjxb.20231124002
Citation: ZHU Ming, QI Xiangang, ZHANG Zongzhi, SHI Yu. Laser-induced pre-placed copper layer titanium-steel joint forming and microstructure research[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 18-26, 88. DOI: 10.12073/j.hjxb.20231124002

Laser-induced pre-placed copper layer titanium-steel joint forming and microstructure research

More Information
  • Received Date: November 23, 2023
  • Available Online: February 06, 2025
  • During the explosive forming of titanium-steel composite plates, defects such as incomplete fusion may occur. Currently, the accuracy, quality, and level of automation in using arc welding for repair are relatively low. The main difficulty lies in the high-quality preparation of the copper transition layer on the steel surface. In this study, a method that utilizes semiconductor laser coaxial powder feeding was proposed to accurately form the Cu transition layer, followed by TIG cladding of a Ti layer on the surface of the Cu layer to achieve localized repair of the composite plate. Using the established semiconductor laser cladding experimental system, the influences of laser power, powder feeding speed, and scanning speed on the cladding parameters and microstructure of the Cu layer were analyzed. After TIG cladding of the Ti layer on the Cu layer surface, a well-formed Ti-Cu-Fe joint was obtained through process optimization, and its microstructure was tested and performance evaluation. The results indicate that :The use of semiconductor lasers enables precise control of the copper cladding thickness, achieving a thickness range of 0.236 ~ 0.462 mm; Energy dispersive spectrometer (EDS) analysis of the Cu-Fe joint reveals that controlling the copper layer thickness significantly reduces Fe content in the upper surface region, thereby suppressing the formation of brittle Fe-Ti intermetallic compounds;After TIG surfacing of the titanium layer, the joint primarily consists of CuTi₂ intermetallic compounds, exhibiting an average shear strength of 194 MPa with a brittle fracture mode.

  • [1]
    Kagawa Y, Nakamura S, Honma K, et al. Corrosion prevention performance of titanium clad steel plates applied on the splash and tidal zones of steel piers[J]. Doboku Gakkai Ronbunshu, 2010(435): 79 − 87.
    [2]
    Su H ,Luo X ,Chai F , et al. Manufacturing technology and application trends of titanium clad steel plates[J]. Journal of Iron & Steel Research International, 2015, 22(11): 977 − 982.
    [3]
    Findik F. Recent developments in explosive welding[J]. Materials & Design, 2011, 32(3): 1081 − 1093.
    [4]
    Qiang Z, Rui L, Qiang Z, et al. Effect of microstructure on mechanical properties of titanium-steel explosive welding interface[J]. Materials Science and Engineering: A, 2022, 830: 142260. doi: 10.1016/j.msea.2021.142260
    [5]
    史长根, 尤峻, 冯建. 压力容器用钛钢复合板缺陷的爆炸堆焊修复技术[J]. 压力容器, 2008(7): 29 − 31. doi: 10.3969/j.issn.1001-4837.2008.07.007

    Shi Changgeng, You Jun, Feng Jian. Explosive welding repair technology for defects in titanium steel composite plates for pressure vessels[J]. Pressure Vessels, 2008(7): 29 − 31. doi: 10.3969/j.issn.1001-4837.2008.07.007
    [6]
    朱明, 王博, 石玗, 等. 激光熔覆过程预置粉末熔化行为的动态检测与分析[J]. 中国激光, 2021, 48(14): 135 − 144.

    Zhu Ming, Wang Bo, Shi Yu, et al. Dynamic detection and analysis of powder melting behavior in laser cladding process[J]. Chinese Journal of Lasers, 2021, 48(14): 135 − 144.
    [7]
    Zhu L D, Xue P S, Lan Q, et al. Recent research and development status of laser cladding: A review[J]. Optics & Laser Technology, 2021, 138(3): 106915.
    [8]
    巩江涛, 舒林森, 王家胜, 等. 激光熔覆工艺优化方法研究现状及发展趋势[J]. 激光与光电子学进展, 2023, 60(19): 22 − 35.

    Gong Jiangtao, Shu Linsen, Wang Jiasheng, et al. Research status and development trends of optimization methods for laser cladding process[J]. Advances in Laser and Optoelectronics, 2023, 60(19): 22 − 35.
    [9]
    韩辉辉, 黎文强, 王腾飞, 等. 激光熔覆再制造技术影响因素的研究[J]. 能源与环保, 2022, 44(9): 225 − 228.

    Han Huihui, Li Wenqiang, Wang Tengfei, et al. Research on the influencing factors of laser cladding and remanufacturing technology[J]. China Energy and Environmental Protection, 2022, 44(9): 225 − 228.
    [10]
    Mitelea I, Groza C, Craciunescu C. Copper interlayer contribution on Nd: YAG laser welding of dissimilar Ti-6Al-4V alloy with X5CrNi18-10 steel[J]. Journal of Materials Engineering and Performance, 2013, 22(8): 2219 − 2223. doi: 10.1007/s11665-013-0507-1
    [11]
    Gnyusov S F, Klimenov V A, Alkhimov Y V, et al. Formation of the structure of titanium and stainless steel in laser welding[J]. Welding International, 2013, 27(4): 295 − 299. doi: 10.1080/09507116.2012.715908
    [12]
    郭顺, 罗添元, 彭勇, 等. Ti/Cu异种金属电子束焊接界面行为[J]. 焊接学报, 2019, 40(8): 26 − 32. doi: 10.12073/j.hjxb.2019400204

    Guo Shun, Luo Tianyuan, Peng Yong, et al. Interfacial behavior of Ti/Cu dissimilar metal electron beam welding[J]. Transactions of The China Welding Institution, 2019, 40(8): 26 − 32. doi: 10.12073/j.hjxb.2019400204
    [13]
    常敬欢, 余刚, 曹睿, 等. 钛合金/铜—镍/不锈钢焊接接头的组织与性能[J]. 焊接学报, 2023, 44(7): 48 − 55.

    Chang Jinghuan, YuGang, Cao Rui, et al. Microstructure and properties of titanium alloy/copper-nickel/stainless steel weld joints[J]. Transactions of The China Welding Institution, 2023, 44(7): 48 − 55.
    [14]
    王红阳, 李权, 宋刚, 等. 基于铜合金中间层的钛合金与不锈钢激光-电弧复合热源焊接研究[J]. 中国激光, 2016, 43(5): 44 − 50.

    Wang Hongyang, Li Quan, Song Gang, et al. Research on laser-arc hybrid heat source welding of titanium alloy and stainless steel based on copper alloy interlayer[J]. Chinese Journal of Lasers, 2016, 43(5): 44 − 50.
  • Cited by

    Periodical cited type(12)

    1. 秦彬皓,于鹏海,孙国立,弗拉基斯拉夫·哈斯金,张宇鹏. 交变磁场对TC4合金TIG焊接接头组织与性能的影响. 机电工程技术. 2025(04): 29-33+105 .
    2. 任香会,梁文奇,王瑞超,韩善果,武威. 焊接模式对电弧增材制造316不锈钢组织及力学性能的影响. 焊接学报. 2024(04): 79-85+92+133-134 . 本站查看
    3. 刘鸿铭,朱宗涛,刘云祺,刘瑞琳. 12 mm厚TC4钛合金激光-MIG复合焊接头组织与性能研究. 精密成形工程. 2024(05): 21-29 .
    4. 赵代娣,刘沁源. 20 mm厚Ti-6Al-4V钛合金窄间隙激光填丝焊接头组织性能研究. 精密成形工程. 2024(12): 180-188 .
    5. 耿占一,胡连海,霍佳磊,卢立祥,王松涛,陈永福. 激光复合焊技术研究及应用进展. 金属加工(热加工). 2023(04): 1-9 .
    6. 张骞,张成竹,林波,冉洸奇,胡世天,朱宗涛. 重熔摆动激光焊修复TC4钛合金焊接接头组织和性能. 焊接. 2023(01): 55-59 .
    7. 冯栋,周卫涛,颉文峰. 焊接工艺对薄壁环形钛合金焊缝成形及承载能力的影响. 焊接. 2023(04): 55-59 .
    8. 胥国祥,张新建,刘海军,胡庆贤,朱杰. 船舶激光-电弧复合热源焊接关键物理机制研究. 金属加工(热加工). 2023(06): 1-7+17 .
    9. 曾俊谚,庄园,杨涛,钟玉婷,杨响明. 基于飞秒激光的钛合金表面微纳米结构制备及腐蚀行为. 焊接. 2023(08): 37-43 .
    10. 周亚举,尹圣铭,夏永中,易果强,薛丽红,严有为. 热处理对电弧熔丝增材制造核电用铁素体/马氏体钢微观组织与力学性能的影响. 焊接学报. 2023(10): 18-26+133-134 . 本站查看
    11. 郝子龙,张粉萍,刘子聪,周围,袁剑平,李松伟,李楠贵,李正勇,邓细望. 基于TC4钛合金的TIG、MIG焊接工艺与性能对比研究. 新技术新工艺. 2023(12): 58-61 .
    12. 席敏敏,李中祥,黄胜,田磊,王强强,姜帆,赵西岐. SUS304/Q235B双金属冶金复合螺旋管激光-CMT复合焊+埋弧焊接头组织及性能. 焊接. 2022(12): 6-12 .

    Other cited types(3)

Catalog

    Article views (61) PDF downloads (20) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return