Advanced Search
SUN Licheng, MAO Honglin, MING Chi, WEI Xing. Fatigue life assessment of load-carrying 60° oblique cruciform full-penetration welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 137-144. DOI: 10.12073/j.hjxb.20231016001
Citation: SUN Licheng, MAO Honglin, MING Chi, WEI Xing. Fatigue life assessment of load-carrying 60° oblique cruciform full-penetration welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 137-144. DOI: 10.12073/j.hjxb.20231016001

Fatigue life assessment of load-carrying 60° oblique cruciform full-penetration welded joints

More Information
  • Received Date: October 15, 2023
  • Available Online: December 15, 2024
  • To study the local stress distributions and fatigue performance of load-carrying 60° oblique cruciform full-penetration welded joints (OCFWJs), three test specimens were designed for fatigue tests under three nominal stress amplitude levels, and the numbers of loading cycles until fatigue failure of the specimens were obtained. Using ABAQUS finite element software, the finite element models of 60°OCFWJs were established, and the hot spot normal stress, hot spot shear stress, and equivalent hot spot stress at the weld toe were calculated. Based on the nominal stress S-N curves and the hot spot stress S-N curves defined in the specifications, the fatigue life of 60° OCWJs under the combined action of tensile and shear stress were evaluated by using the nominal principal stress method, the equivalent hot spot stress method, and the interaction equation method, respectively. The results showed that whether the nominal stress range, the nominal tensile stress range, or the nominal shear stress range were used, the fatigue life of 60° OCWJs couldn't reliably evaluated. According to the International Institute of Welding specification, whether the hot spot tensile stress ranges or the hot spot shear stress ranges couldn't be used to evaluate the fatigue life of 60° OCFWJs reliably. The fatigue lives predicted by the interaction equation method in Eurocode 3:Design of Steel Structures were much lower than the experimental values , and the fatigue lives predicted by the equivalent hot spot stress method were in good agreement with the experimental values .

  • [1]
    马景平, 曹睿, 周鑫. 高强钢焊接接头疲劳寿命的提高方法进展[J]. 焊接学报, 2024, 45(10): 115 − 128.

    Ma Jingping, Cao Rui, Zhou Xin. Development on improving fatigue life of high strength steel welded joints[J]. Transactions of the China Welding Institution, 2024, 45(10): 115 − 128.
    [2]
    Timar I, Arpad I W. Optimal design of the fillet weld fastening the wind turbine column[J]. China Welding, 2024, 33(3): 39 − 43.
    [3]
    Xiao L, Wei X, Zhao J M, et al. Hot spot stress concentration factor of CFST T/Y joints based on modified equivalent thickness[J]. Structures, 2023(51): 910 − 925.
    [4]
    高杰, 鞠晓臣, 左照坤, 等人. 基于等效结构应力法的高强钢焊接结构低温主S-N曲线[J]. 船舶力学, 2024, 28(4): 571 − 581. doi: 10.3969/j.issn.1007-7294.2024.04.009

    Gao Jie, Ju Xiaochen, Zuo Zhaokun, et al. Low temperature master S-N curve of high strength steel welded structure based on equivalent structural stress method[J]. Journal of Ship Mechanics, 2024, 28(4): 571 − 581. doi: 10.3969/j.issn.1007-7294.2024.04.009
    [5]
    宋威, 满铮, 徐杰, 等. 含错位效应十字焊接接头疲劳可靠性评估[J]. 焊接学报, 2023, 44(6): 20 − 26,34.

    Song Wei, Man Zheng, Xu Jie, et al. Fatigue reliability analysis of load-carrying cruciform joints with misalignment effects[J]. Transactions of the China Welding Institution, 2023, 44(6): 20 − 26,34.
    [6]
    Song W, Man Z, Xu J, et al. Fatigue reliability assessment of load-carrying cruciform welded joints with undercuts and misalignments[J]. Fatigue & Fracture of Engineering Materials & Structures, 2024, 47(2): 511 − 531.
    [7]
    Laher B , Buzzi C , Leitner M, et al. Effect of angular distortion and axial misalignment on the fatigue strength of welded and ground mild steel cruciform joints[J]. Welding in the World, 2024, 68(5): 1169 − 1186.
    [8]
    苏庆田, 沈翀. 错位缺陷对钢桥中厚板斜十字接头静力性能影响研究[J]. 桥梁建设, 2023, 53(5): 17 − 23.

    Su Qingtian, Shen Chong. Research on influence of staggering defects on static performance of thick plate skew cross joints in steel bridge[J]. Bridge Construction, 2023, 53(5): 17 − 23.
    [9]
    Soligo M, Campagnolo A, Meneghetti G, et al. Misalignment factors to affect the fatigue of welded load-carrying joints[J]. International Journal of Fatigue, 2024, 178: 107996. doi: 10.1016/j.ijfatigue.2023.107996
    [10]
    Bartsch H, Feldmann M. Fatigue strength of cruciform joints with weld imperfections: a comprehensive numerical study[J]. Engineering Failure Analysis, 2024, 157: 107866. doi: 10.1016/j.engfailanal.2023.107866
    [11]
    Raftar H R, Ahola A, Lipiainen K, et al. Fatigue behavior of load-carrying cruciform fillet weld joints under variable amplitude load[J]. Journal of Constructional Steel Research, 2024, 215: 108559. doi: 10.1016/j.jcsr.2024.108559
    [12]
    魏国前, 郭子贤, 闫梦煜, 等. 基于Pavlou方法的焊接结构疲劳寿命预测[J]. 焊接学报, 2023, 44(9): 16 − 23.

    Wei Guoqian, Guo Zixian, Yan Mengyu, et al. Pavlou approach based fatigue life prediction for welded structures[J]. Transactions of the China Welding Institution, 2023, 44(9): 16 − 23.
    [13]
    Wang W Z, Shi W Z, Li B, et al. High-cycle fatigue life assessment of welded cruciform joints of Q460D steel[J]. Structures, 2023, 57: 105163. doi: 10.1016/j.istruc.2023.105163
    [14]
    聂春戈, 张旭, 管明珠, 等. 非承载角焊缝十字接头疲劳性能[J]. 焊接, 2021(1): 8 − 12,61.

    Nie Chunge, Zhang Xu, Guan Minzhu, et al. Fatigue property of non-load-carrying fillet welds in cruciform joint[J]. Welding & Joining, 2021(1): 8 − 12,61.
    [15]
    European Committee for Standardization. Eurocode 3: design of steel structures, part 1-9: fatigue, EN 1993-1-9-2005[S]. Bruxelles: European Committee for Standardization, 2007.
    [16]
    Hobbacher A. Recommendations for fatigue design of welded joints and components[S]. Paris: International Institute of Welding, 2008
    [17]
    Zhao J M, Xiao L, Wei X, et al. Parametric study and neural network-based prediction for stress concentration factor of concrete-filled steel tubular T-joint[J]. Ocean Engineering, 2024, 305: 117972. doi: 10.1016/j.oceaneng.2024.117972
  • Cited by

    Periodical cited type(9)

    1. 高博轩,赵弘,苗兴园. 基于改进GWO-GRNN的管道焊缝三维重构测量. 机床与液压. 2024(01): 1-10 .
    2. 陈晓明,王丽,马良,周峰,袁山山. 钢筋工程焊缝质量检测技术研究进展. 北京理工大学学报. 2024(12): 1215-1224 .
    3. 唐昌华,吴琼,时兵,陈坚,李洪亮. 基于压缩感知的激光复合成像超分辨三维重构方法. 激光杂志. 2023(09): 109-113 .
    4. 李诺薇,邹维科,种法力. 基于3D激光扫描传感器的焊缝区域跟踪方法设计. 激光与红外. 2023(11): 1650-1656 .
    5. 余志,白小亮. 一种石油管内焊缝余高及刮槽深度的测量方法. 石油工业技术监督. 2022(05): 17-19 .
    6. 杨国威,张金丽. 基于光栅投影的焊后焊缝表面三维测量. 焊接学报. 2022(04): 100-105+112+119-120 . 本站查看
    7. 马涛,丁克勤,舒安庆,刘亚男. 基于布里渊分布式光纤的储液罐变形场重构方法研究. 压力容器. 2021(04): 11-19 .
    8. 胡曦,余震,刘海生. 管道全位置焊缝三维测量研究. 石油机械. 2021(09): 129-136 .
    9. 李亮亮,郑世伟,单清群,左玉达. 转向架焊接结构件深度缺陷超声相控阵检测及三维可视化. 焊接. 2021(09): 44-50+64 .

    Other cited types(12)

Catalog

    Article views (57) PDF downloads (28) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return