Citation: | ZHAO Yang, LIU Xuming, ZHANG Nan, WANG Junsheng, PAN Hui. Fatigue crack extension mechanism of SR-CGHAZ in Q960E girder steel based on quasi-dynamic model prediction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 84-93. DOI: 10.12073/j.hjxb.20230830001 |
In order to study the fatigue crack extension mechanism of Q960E SR-CGHAZ of semi-trailer beams in service, this paper establishes a quasi-dynamic stress analysis model and obtains the fatigue stresses by means of dynamic stress test coupled with finite element simulation. The SR-CGHAZ of Q960E was obtained by secondary thermal simulation and the fatigue crack extension rate and impact toughness were tested; the microstructure and M-A morphology were analyzed by LSCM; the substructure and orientation were analyzed by EBSD; and the fatigue crack extension was investigated by TEM. The fatigue crack extension mechanism was investigated by TEM. The results show that the quasi-dynamic simulation model based on dynamic stress measurement has high accuracy; under the condition of peak stress of 300 MPa and stress ratio R of 0.05, the M-A of SR-CGHAZ transforms from point-like to needle-like and short bar-like with the prolongation of the cooling time of t8/5 in the primary thermal simulation, the impact toughness decreases, and the accompanying fatigue crack extension rate increases. This is mainly related to the broadening of the martensite lath bundles, the change of substructure orientation of the matrix, the reduction of the density of large-angle grain boundaries, and the transformation of M-A into chain precipitated VCr2C2-type carbides between the martensite lath bundles.
[1] |
节能与新能源汽车技术路线图战略咨询委员会, 中国汽车工程学会. 节能与新能源汽车技术路线图[M]. 北京: 机械工业出版社, 2016.
Energy-saving and New Energy Vehicle Technology Roadmap Strategic Advisory Committee, & China Society of Automotive Engineers. Energy-saving and new energy vehicle technology roadmap [M]. Beijing: China Machine Press, 2016.
|
[2] |
张楠. 浅谈中国商用汽车节能与轻量化的意义与愿景[J]. 汽车文摘, 2020(10): 7 − 15.
Zhang Nan. A brief discussion on the significance and vision of energy conservation and lightweight in commercial vehicles in China[J]. Automotive Digest, 2020(10): 7 − 15.
|
[3] |
张楠, 田志凌, 潘辉, 等. 热轧汽车结构钢在轻量化商用车上的发展与应用[J]. 汽车文摘, 2020(9): 1 − 11.
Zhang Nan, Tian Zhiling, Pan Hui, et al. Development and application of hot-rolled automotive structural steel in lightweight commercial vehicles[J]. Automotive Digest, 2020(9): 1 − 11.
|
[4] |
张楠, 田志凌, 张书彦, 等. 感应回火对含钒900MPa级高强钢组织与性能的影响[J/OL]. 热加工工艺, 2020: 11-11 [2020-11-11]. https://doi.org/10.14158/j.cnki.1001-3814.20193019.
Zhang Nan, Tian Zhiling, Zhang Shuyan, et al. Influence of induction tempering on the microstructure and properties of vanadium-containing 900 MPa grade high-strength steel [J/OL]. Hot Working Technology, 2020: 11-11 [2020-11-11]. https://doi.org/10.14158/j.cnki.1001-3814.20193019.
|
[5] |
房玉佩, 谢振家, 尚成嘉. 感应回火对
Fang Yupei, Xie Zhenjia, Shang Chengjia. Effect of induction tempering on the carbide precipitation behavior and toughness of
|
[6] |
张楠, 田志凌, 董现春, 等. Q960E热影响粗晶区疲劳寿命与ΔKth值的关系分析[J]. 焊接学报, 2018, 39(7): 106 − 110.
Zhang Nan, Tian Zhiling, Dong Xianchun, et al. Analysis of the relationship between fatigue life of the coarse-grained heat-affected zone of Q960E and ΔKth value[J]. Transactions of the China Welding Institution, 2018, 39(7): 106 − 110.
|
[7] |
董现春, 张楠, 张侠洲, 等. Q960E焊接粗晶区组织的再热脆化与软化分析[J]. 焊接学报, 2022, 43(5): 56 − 62. doi: 10.12073/j.hjxb.20210702002
Dong Xianchun, Zhang Nan, Zhang Xiazhou, et al. Analysis of reheat brittleness and softening of the welded coarse-grained area of Q960E[J]. Transactions of the China Welding Institution, 2022, 43(5): 56 − 62. doi: 10.12073/j.hjxb.20210702002
|
[8] |
李鹤飞, 张鹏, 张哲峰. 高强钢断裂韧性与疲劳裂纹扩展评价方法研究进展[J]. 机械工程学报, 2023, 59(16): 18 − 31.
Li Hefei, Zhang Peng, Zhang Zhefeng. Research progress on fracture toughness and fatigue crack propagation evaluation methods of high-strength steel[J]. Journal of Mechanical Engineering, 2023, 59(16): 18 − 31.
|
[9] |
李鹤飞. 高强钢断裂韧性与裂纹扩展机制研究[D]. 合肥: 中国科学技术大学, 2019.
Li Hefei. Study on fracture toughness and crack propagation mechanism of high-strength steel [D]. Hefei: University of Science and Technology of China, 2019.
|
[10] |
张楠. 商用半挂车用高强钢焊接接头组织性能与使役疲劳行为研究[D]. 北京: 钢铁研究总院, 2020.
Zhang Nan. Research on the microstructure performance and service fatigue behavior of welded joints of high-strength steel for commercial semi-trailer [D]. Beijing: General Research Institute for Nonferrous Metals, 2020.
|
[11] |
刘勋, 黄世伟, 朱利静, 等. 半挂车钢板弹簧及轮胎的刚度等效分析[J]. 专用汽车, 2008(4): 44 − 46.
Liu Xun, Huang Shiwei, Zhu Lijing, et al. Equivalent stiffness analysis of semi-trailer plate spring and tire[J]. Special Purpose Vehicle, 2008(4): 44 − 46.
|
[12] |
赵阳. 基于准动态模型的半挂车纵梁轻量化优化[C]//中国汽车工程学会. 2018中国汽车工程学会年会论文集. 机械工业出版社, 2018: 1405 − 1409.
Zhao Yang. Lightweight optimization of semi-trailer longitudinal beam based on quasi-static model [C] // China Society of Automotive Engineers. Proceedings of the 2018 Annual Conference of the China Society of Automotive Engineers. Beijing: China Machine Press, 1405 − 1409.
|
[13] |
鲁付杰. 半挂车车架有限元分析与轻量化研究[D]. 郑州: 中原工学院, 2017.
Lu Fujie. Finite element analysis and lightweight research of semi-trailer frame [D]. Zhengzhou: Zhongyuan University of Technology, 2017.
|
[14] |
路栋栋. 基于有限元和多体动力学的厢式半挂车疲劳寿命分析研究[D]. 长沙: 湖南大学, 2018.
Lu Dongdong. Fatigue life analysis of box-type semi-trailer based on finite element and multi-body dynamics [D]. Changsha: Hunan University, 2018.
|
[15] |
张润东. 某特种半挂车车架断裂原因分析研究[D]. 太原: 太原理工大学, 2013.
Zhang Rundong. Analysis of the fracture cause of a special type of semi-trailer frame [D]. Taiyuan: Taiyuan University of Technology, 2013.
|
[16] |
李磊. 半挂牵引车车架疲劳可靠性分析及优化[D]. 长沙: 湖南大学, 2016.
Li Lei. Fatigue reliability analysis and optimization of semi-trailer tractor frame [D]. Changsha: Hunan University, 2016.
|
[17] |
李楠. 半挂车车架多轴疲劳寿命预测[D]. 太原: 太原理工大学, 2012.
Li Nan. Prediction of multi-axial fatigue life for semi-trailer frame [D]. Taiyuan: Taiyuan University of Technology.
|
[18] |
刘正道. 半挂车牵引板结构优化与疲劳试验[D]. 广州: 华南理工大学, 2017.
Liu Zhengdao. Structural optimization and fatigue testing of semi-trailer towing plate [D]. Guangzhou: South China University of Technology, 2017.
|
[19] |
张楠, 田志凌, 张书彦, 等. Q700D热影响粗晶区疲劳寿命与小裂纹扩展分析[J]. 钢铁研究学报, 2019, 31(8): 741 − 747.
Zhang Nan, Tian Zhiling, Zhang Shuyan, et al. Fatigue life and small crack propagation analysis of the coarse-grained heat-affected zone of Q700D[J]. Journal of Iron and Steel Research, 2019, 31(8): 741 − 747.
|
[20] |
温娟, 其其格, 鞠新华, 等. 钢铁组织中M-A岛含量的定量分析方法[J]. 中国冶金, 2018, 28(4): 22 − 26.
Wen Juan, Qi Qige, Ju Xinhua, et al. Quantitative analysis method for M-A island content in steel matrix[J]. China Metallurgy, 2018, 28(4): 22 − 26.
|
[21] |
张楠, 董现春, 徐晓宁, 等. Ti-Nb微合金化高强钢的焊接接头组织和性能[J]. 材料热处理学报, 2014, 35(6): 115 − 120.
Zhang Nan, Dong Xianchun, Xu Xiaoning, et al. Microstructure and properties of welded joints of Ti-Nb microalloyed high-strength steel[J]. Journal of Materials Thermal Treatment, 2014, 35(6): 115 − 120.
|
[22] |
张楠, 田志凌, 张熹, 等. Q690CFD高强钢焊接热影响区的断裂韧性[J]. 焊接学报, 2018, 39(1): 26 − 31.
Zhang Nan, Tian Zhiling, Zhang Xi, et al. Fracture toughness of the welding heat-affected zone of Q690CFD high-strength steel[J]. Transactions of the China Welding Institution, 2018, 39(1): 26 − 31.
|
[23] |
贺信莱, 尚成佳, 杨善武, 等. 高性能低贝氏体钢[M]. 北京: 冶金工业出版社, 2008.
He Xinlai, Shang Chengjia, Yang Shanwu, et al. High-performance low bainite steel [M]. Beijing: Metallurgical Industry Press, 2008.
|
[24] |
张楠, 陈延清, 徐晓宁, 等. X80管线钢Cu-Ni含量及热输入对CGHAZ冲击离散性的影响[J]. 焊接学报, 2016, 37(9): 119 − 124.
Zhang Nan, Chen Yanqing, Xu Xiaoning, et al. Effect of Cu-Ni content and heat input on the impact dispersion of CGHAZ in X80 pipeline steel[J]. Transactions of the China Welding Institution, 2016, 37(9): 119 − 124.
|
[25] |
Lu D D, Lin B, Liu T L, et al. Effect of grain structure on fatigue crack propagation behavior of Al-Cu-Li alloys[J]. Journal of Materials Science & Technology, 2023, 148: 75 − 89.
|
[26] |
雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006.
Yong Qilong. The second phase in steel materials [M]. Beijing: Metallurgical Industry Press, 2006.
|