Citation: | LI Peng, ZHANG Zhenyang, ZHANG Liangliang, MA Xiong, SUN Bingbing, LI Chao, DONG Honggang. Vacuum brazing Ti2AlNb / GH4169 alloy with (TiZrHf)40(NiCu)55Al5 high-entropy amorphous filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 1-11. DOI: 10.12073/j.hjxb.20230821001 |
A high-entropy amorphous brazing filler metal (TiZrHf)40(NiCu)55Al5 was designed for vacuum brazing of Ti2AlNb alloy and GH4169 nickel-based superalloy. The effects of brazing parameters on the interfacial microstructure, mechanical properties and fracture behavior of Ti2AlNb alloy/GH4169 nickel-based superalloy brazed joints were studied. The results showed that the brazed joints can be divided into Ti2AlNb/ diffusion reaction zone (zone I)/brazing seam center zone (zone II)/diffusion reaction zone (zone III)/GH4169. The typical interface microstructure of brazed joints was Ti2AlNb/B2 + Ti2Ni(Al, Nb)/(Ti, Zr, Hf)(Ni, Cu)/(Ni, Cr, Fe, Ti)ss + Cr-rich (Ni, Cr, Fe)ss + Ni-rich(Ni, Cr, Fe)ss + (Ni, Cr, Fe)ss/GH4169.With the increase of brazing temperature and brazing time, the shear strength of brazed joints increased first and then decreased. When the brazing temperature was
[1] |
李亚江, 夏春智, 石磊. 国内镍基高温合金的焊接研究现状[J]. 现代焊接, 2010(7): 1 − 4.
Li Yajiang, Xia Chunzhi, Shi Lei. Present situation about welding research of nickel-base high-temperature alloy at home[J]. Modern Welding Technology, 2010(7): 1 − 4.
|
[2] |
王会阳, 安云岐, 李承宇, 等. 镍基高温合金材料的研究进展[J]. 材料导报, 2011, 25(S2): 482 − 486.
Wang Huiyang, An Yunqi, Li Chengyu, et al. Research progress of Ni-based superalloys[J]. Materials Reports, 2011, 25(S2): 482 − 486.
|
[3] |
Li P, Wang Y C, Zhang L L, et al. High strength diffusion bonding of Ti2AlNb to GH4169 with (TiZrHfNb)95Al5 high entropy interlayer[J]. Materials Science and Engineering: A, 2024, 902: 146558. doi: 10.1016/j.msea.2024.146558
|
[4] |
Peters M, Leyens C. Titanium and titanium alloys: fundamentals and applications[M]. Weinheim: Wiley-vch, 2006.
|
[5] |
Chen B B, Xiong H P, Guo S Q, et al. Microstructure and mechanical properties of dissimilar welded Ti3Al/Ni-based superalloy joint using a Ni-Cu filler alloy[J]. Metallurgical and Materials Transactions: A, Physical Metallurgy and Materials Science, 2015, 46(2): 756 − 761. doi: 10.1007/s11661-014-2652-z
|
[6] |
Chen B Q, Xiong H P, Sun B B, et al. Dissimilar joining of Ti3Al-based alloy to Ni-based superalloy by arc welding technology using gradient filler alloys[J]. Materials and Design, 2015, 87: 732 − 741. doi: 10.1016/j.matdes.2015.07.168
|
[7] |
Cai X L, Li H M, Ji B K, et al. Effect of single alloying element (Ti, Nb, V, Cu) on microstructure and mechanical properties of dissimilar TiAl/Ni-based superalloy laser joints[J]. Optics & Laser Technology, 2022, 146: 107575.
|
[8] |
Ren H S, Wu X, Chen B, et al. Microstructures and mechanical properties of Ti3Al/Ni-based superalloy joints diffusion bonded with Ni and TiNiNb foils[J]. Welding in the World, 2017, 61(2): 375 − 381. doi: 10.1007/s40194-016-0415-8
|
[9] |
He P, Wang J, Lin T, et al. Effect of hydrogen on diffusion bonding of TiAl-based intermetallics and Ni-based superalloy using hydrogenated Ti6Al4V interlayer[J]. International Journal of Hydrogen Energy, 2014, 39(4): 1882 − 1887. doi: 10.1016/j.ijhydene.2013.11.035
|
[10] |
钱锦文, 李京龙, 侯金保, 等. Nb + Ni中间层对Ti2AlNb与GH4169扩散连接接头组织与性能影响[J]. 航空材料学报, 2009, 29(1): 57 − 62.
Qian Jinwen, Li Jinglong, Hou Jinbao, et al. Microstructures and mechanical properities of diffusion bonded Ti2AlNb and GH4169 jionts by using Nb + Ni interlayer[J]. Journal of Aeronautical Materials, 2009, 29(1): 57 − 62.
|
[11] |
Zhang L L, Dong H G, Li P, et al. Vacuum brazing TiAl intermetallic to K4169 alloy using amorphous filler metals Ti56.25–xZrxNi25Cu18. 75[J]. Journal of Materials Science & Technology, 2023, 154: 217-231.
|
[12] |
Dong D, Shi K Q, Zhu D D, et al. Microstructure evolution and mechanical properties of high Nb–TiAl alloy/GH4169 joints brazed using CuTiZrNi amorphous filler alloy[J]. Intermetallics, 2021, 139: 107351. doi: 10.1016/j.intermet.2021.107351
|
[13] |
Cai J J, Hu S P, Liu H B, et al. Microstructural evolution and mechanical properties of Ti2AlNb/GH99 superalloy brazed joints using TiZrCuNi amorphous filler alloy[J]. Aerospace, 2023, 10(1): 73. doi: 10.3390/aerospace10010073
|
[14] |
Li L, Zhao W, Feng Z X, et al. Interfacial microstructure and shear strength of Ti50Al50 joint vacuum brazed with Ti-Cu-Ni-Nb-Al-Zr-Hf amorphous filler alloy[J]. Rare Metal Materials and Engineering, 2022, 51(2): 378 − 385.
|
[15] |
Wan B, Li X Q, Pan C L, et al. Microstructure and mechanical properties of TiAl/Ni-based superalloy joints vacuum brazed with Ti–Zr–Fe–Cu–Ni–Co–Mo filler metal[J]. Rare Metals, 2021, 40(8): 2134 − 2142. doi: 10.1007/s12598-020-01550-x
|
[16] |
Jiang C Y, Li X Q, Wan B, et al. Microstructure evolution and mechanical properties of TiAl/GH536 joints vacuum brazed with Ti–Zr–Cu–Ni filler metal[J]. Intermetallics, 2022, 142: 107468. doi: 10.1016/j.intermet.2022.107468
|
[17] |
李小强, 娄立, 屈盛官, 等. 一种钛基钎料钎焊TiAl/GH536的接头界面组织及性能[J]. 焊接学报, 2019, 40(10): 80 − 85.
Li Xiaoqiang, Luo Li, Qu Shengguan, et al. Microstructure and properties of brazing joints with a Ti based filler of TiAl/GH536 alloy[J]. Transactions of the China Welding Institution, 2019, 40(10): 80 − 85.
|
[18] |
Gao M C, Yeh J W, Liaw P K, et al. High-entropy alloys: fundamentals and applications[M]. Switzerland: Springer, 2016.
|
[19] |
Dong K W, Kong J, Yang Y, et al. Achieving high-strength joining of TiAl and Ni-based alloys at room temperature and 750 ℃ via utilizing a quinary FeCoNi-based amorphous filler[J]. Journal of Materials Research and Technology, 2020, 9(2): 1955 − 1965. doi: 10.1016/j.jmrt.2019.12.028
|
[20] |
Dong K W, Kong J, Peng Y, et al. A new strategy for high-strength joining of dissimilar materials[J]. Journal of Materials Processing Technology, 2020, 283: 116724. doi: 10.1016/j.jmatprotec.2020.116724
|
[21] |
Ren H S, Feng H L, Ren X Y, et al. Joining of TiAl-based alloy and a Ni-based superalloy with a NiCoFeCuSiB high entropy filler metal[J]. Welding in the World, 2022, 66(3): 557 − 565. doi: 10.1007/s40194-021-01245-6
|
[22] |
Kokabi D, Kaflou A. TiAl/IN718 dissimilar brazing with TiZrNiCuCo high-entropy filler metal: phase characterization and fractography[J]. Welding in the World, 2021, 65(6): 1189 − 1198. doi: 10.1007/s40194-021-01075-6
|
[23] |
Inoue A, Zhang W. Formation, thermal stability and mechanical properties of Cu-Zr-Al bulk glassy alloys[J]. Materials Transactions, 2002, 43(11): 2921 − 2925. doi: 10.2320/matertrans.43.2921
|
[24] |
Kim K B, Warren P J, Cantor B. Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)–(Ni, Cu, Ag)–Al alloys[J]. Journal of Non-Crystalline Solids, 2003, 317(1-2): 17 − 22. doi: 10.1016/S0022-3093(02)02002-1
|
[25] |
韩文倩, 董红刚, 马月婷, 等. Ti43.76Zr12.50Cu37.49-xNi6.25Cox非晶钎料真空钎焊TC4钛合金/316L不锈钢[J]. 焊接学报, 2024, 45(1): 47 − 57. doi: 10.12073/j.hjxb.20221123001
Han Wenqian, Dong Honggang, Ma Yueting, et al. Vacuum brazing TC4 titanium alloy/316L stainless steelwith Ti43.76Zr12.50Cu37.49-xNi6.25Cox amorphous filler metals[J]. Transactions of the China Welding Institution, 2024, 45(1): 47 − 57. doi: 10.12073/j.hjxb.20221123001
|
[26] |
Ren H S, Ren X Y, Long W M, et al. Formation mechanism of interfacial microstructures and mechanical properties of Ti2AlNb/Ni-based superalloy joints brazed with NiCrFeSiB filler metal[J]. Progress in Natural Science: Materials International, 2021, 31(2): 310 − 318. doi: 10.1016/j.pnsc.2020.12.009
|
[1] | ZHANG Zhen, XUE Peng, WANG Dong, WANG Quanzhao, NI Dingrui, XIAO Bolü, MA Zongyi. Microstructure and mechanical properties of T-type friction stir welded SiCp/2009Al composite matrix material[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 75-81. DOI: 10.12073/j.hjxb.20220104002 |
[2] | LONG Ling, SHI Qingyu, LIU Tie, LIU Xi, SUN Zhanguo. Modeling of material flow during friction stir welding and the application for defect prediction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 84-88. DOI: 10.12073/j.hjxb.2019400017 |
[3] | WANG Weibing, LUAN Guohong, ZHANG Kun, ZHAO Huaxia. Fundamental model of plastic material flow in FSW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 71-74. |
[4] | ZHANG Jing, CHANG Yongqin, HE Jianchao, WAN Farong. Friction stir welding of oxide dispersion strengthened material[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 63-66. |
[5] | DENG Yongfang, ZUO Dunwen, SONG Bo. Eccentric extrusion flow model of friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (12): 41-45. |
[6] | ZHANG Zhao, LIU Huijie. Effect of pin shapes on material deformation and temperature field in friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (3): 5-8. |
[7] | LI Jun, YANG Jianguo, TAN Xing, FANG Hongyuan. Experimental investigation on controlling welding hot crack with welding with trailing rotating extrusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (12): 45-48. |
[8] | LI Jun, YANG Jianguo, WENG Lulu, FANG Hongyuan. Residual distortion of thin-plate weldments controlled by rotating extrusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 25-28. |
[9] | ZHANG Zhao, LIU Yali, CHEN Jintao, ZHANG Hongwu. Material flow patterns in friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (11): 17-21. |
[10] | LIU Huijie, ZHOU Li. Progress in friction stir welding of high melting point materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 101-104. |