Advanced Search
HAN Jing, SHI Yu, ZHANG Gang, LI Guang, LE Wangyun, DAI Fengxian. Influence of power modulation on laser oscillating welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 70-78. DOI: 10.12073/j.hjxb.20230730001
Citation: HAN Jing, SHI Yu, ZHANG Gang, LI Guang, LE Wangyun, DAI Fengxian. Influence of power modulation on laser oscillating welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 70-78. DOI: 10.12073/j.hjxb.20230730001

Influence of power modulation on laser oscillating welding of aluminum alloys

More Information
  • Received Date: July 29, 2023
  • Available Online: June 05, 2024
  • In order to verify the influence of energy distribution patterns on the quality of dissimilar aluminum alloy welding, a full domain power modulation (FDPM) laser oscillating welding system was used to conduct butt welding experiments on 6061 and 5052 aluminum alloys. A comparison was made on the effects of traditional laser welding (LW) and two laser oscillating welding modes (constant power-CP, gradient power-GP) on the weld seam, porosity, microstructure, and mechanical properties. The results showed that beam oscillation improved the weld seam formation, with the GP mode having the least surface depression. Under the oscillating mode, the proportion of equiaxed grains in the weld seam was higher than that in laser welding, among which the GP mode weld had the highest equiaxed degree, displaying the highest joint strength and fusion zone hardness. The GP mode reduced the temperature gradient of the molten pool during welding, resulting in the largest undercooling and heterogeneous nucleation rate of the molten pool, thus increasing the proportion of equiaxed grains in the weld seam. The laser oscillating welding altered the energy distribution pattern, lowering the energy peak. The energy density at the center of the weld seam was higher under the GP mode than the CP mode, resulting in better fusion of the weld seam.

  • [1]
    Chen C, Xiang Y Z, Gao M. Weld formation mechanism of fiber laser oscillating welding of dissimilar aluminum alloys[J]. Journal of Manufacturing Processes, 2020, 60: 180 − 187. doi: 10.1016/j.jmapro.2020.10.050
    [2]
    Chen C, Yin X, Liao W, et al. Microstructure and properties of 6061/2A12 dissimilar aluminum alloy weld by laser oscillation scanning[J]. Journal of Materials Research and Technology, 2021, 14: 2789 − 2798. doi: 10.1016/j.jmrt.2021.08.105
    [3]
    Yan S, Qin Q H, Chen H, et al. Hybrid laser welding of dissimilar aluminum alloys: welding processing, microstructure, properties and modelling[J]. Journal of Manufacturing Processes, 2020, 56: 295 − 305. doi: 10.1016/j.jmapro.2020.03.048
    [4]
    Ke W C, Bu X Z, Oliveira J P, et al. Modeling and numerical study of keyhole-induced porosity formation in laser beam oscillating welding of 5A06 aluminum alloy[J]. Optics and Laser Technology, 2021, 133: 106540. doi: 10.1016/j.optlastec.2020.106540
    [5]
    Han J, Shi Y, Zhang G, et al. Minimizing defects and controlling the morphology of laser welded aluminum alloys using power modulation-based laser beam oscillation[J]. Journal of Manufacturing Processes, 2022, 83: 49 − 59. doi: 10.1016/j.jmapro.2022.08.031
    [6]
    Wang L, Liu Y, Yang C G, et al. Study of porosity suppression in oscillating laser-MIG hybrid welding of AA6082 aluminum alloy[J]. Journal of Materials Processing Technology, 2021, 292: 117053. doi: 10.1016/j.jmatprotec.2021.117053
    [7]
    Wang L, Gao M, Hao Z Q. A pathway to mitigate macrosegregation of laser-arc hybrid Al-Si welds through beam oscillation[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119467. doi: 10.1016/j.ijheatmasstransfer.2020.119467
    [8]
    张贺, 靳军, 蒋平, 等. 6061铝合金激光摆动−电弧复合焊组织与力学性能分析[J]. 焊接学报, 2024, 45(1): 94 − 102. doi: 10.12073/j.hjxb.20230205001

    Zhang He, Jin Jun, Jiang Ping, et al. Study on microstructure and mechanical properties of 6061 aluminum alloy prepared by oscillating laser-arc hybrid welding[J]. Transactions of the China Welding Institution, 2024, 45(1): 94 − 102. doi: 10.12073/j.hjxb.20230205001
    [9]
    肖珺, 葛欣雨, 盖胜男, 等. 基于摆动激光扫描的GMAW焊缝成形调控[J]. 焊接学报, 2024, 45(4): 7 − 12. doi: 10.12073/j.hjxb.20230423001

    Xiao Jun, Ge Xinyu, Gai Shengnan, et al. Regulation of bead formation in GMAW based on oscillating-laser scanning[J]. Transactions of the China Welding Institution, 2024, 45(4): 7 − 12. doi: 10.12073/j.hjxb.20230423001
    [10]
    Zhang X D, Chen W Z, Bao G, et al. Improvement of weld quality using a weaving beam in laser welding[J]. Journal of Materials Science & Technology, 2004, 20(5): 633 − 636.
    [11]
    Zhang L J, Zhang X J, Ning J, et al. Modulated fiber laser welding of high reflective AZ31[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(1-4): 721 − 733. doi: 10.1007/s00170-014-6303-8
    [12]
    Ning J, Zhang L J, Yin X Q, et al. Mechanism study on the effects of power modulation on energy coupling efficiency in infrared laser welding of highly-reflective materials[J]. Materials & Design, 2019, 178: 107871.
    [13]
    Jiang P Z, Dong H, Cai Y, et al. Effects of laser power modulation on keyhole behavior and energy absorptivity for laser welding of magnesium alloy AZ31[J]. The International Journal of Advanced Manufacturing Technology, 2023, 125(1-2): 563 − 576. doi: 10.1007/s00170-022-10586-5
    [14]
    Zhang M J, Wu J, Mao C, et al. Impact of power modulation on weld appearance and mechanical properties during laser welding of AZ31B magnesium alloy[J]. Optics & Laser Technology, 2022, 156: 108490.
    [15]
    Li J Z, Liu Y B, Tao Y J, et al. Analysis of vapor plume and keyhole dynamics in laser welding stainless steel with beam oscillation[J]. Infrared Physics & Technology, 2021, 113: 103536.
    [16]
    Wang L, Gao M, Zhang C, et al. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy[J]. Materials & Design, 2016, 108: 707 − 717.
    [17]
    Schweier M, Heins J F, Haubold M W, et al. Spatter formation in laser welding with beam oscillation[J]. Physics Procedia, 2013, 41: 20 − 30. doi: 10.1016/j.phpro.2013.03.047
    [18]
    Mahrle A, Beyer E. Modeling and simulation of the energy deposition in laser beam welding with oscillatory beam deflection[J]. Laser Materials Processing Conference, 2007, 1: 714 − 723.
    [19]
    Wang L, Gao M, Zeng X Y. Experiment and prediction of weld morphology for laser oscillating welding of AA6061 aluminium alloy[J]. Science and Technology of Welding and Joining, 2019, 24(4): 334 − 341. doi: 10.1080/13621718.2018.1551853
    [20]
    雷玉成, 汪建敏, 贾志宏. 金属材料成型原理[M]. 北京: 化学工业出版社, 2006.

    Lei Yucheng, Wang Jianmin, Jia Zhihong. Forming principle of metal materials[M]. Beijing: Chemical Industry Press, 2006.
    [21]
    刘会杰, 闫久春, 魏艳红, 等. 焊接冶金与焊接性[M]. 北京: 机械工业出版社, 2007.

    Liu Huijie, Yan Jiuchun, Wei Yanhong, et al. Welding metallurgy and weldability[M]. Beijing: China Machine Press, 2007.
    [22]
    Gao M, Wang H K, Hao K D, et al. Evolutions in microstructure and mechanical properties of laser lap welded AZ31 magnesium alloy via beam oscillation[J]. Journal of Manufacturing Processes, 2019, 45: 92 − 99. doi: 10.1016/j.jmapro.2019.07.001
  • Related Articles

    [1]GAO Shikang, ZHOU Li, ZHANG Xinmeng, ZHANG Junfeng, LI Gaohui, ZHAO Hongyun. Microstructure and properties of friction stir welded joints for 6061-T6/7075-T6 dissimilar aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 35-42. DOI: 10.12073/j.hjxb.20210616003
    [2]YU Han, PAN Longzheng, ZHANG Linjie, LIANG Wensheng, BAI Li′an. Effect of beam oscillating and nitrogen alloying upon microstructure and mechanical properties in laser welding of molybdenum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 49-55. DOI: 10.12073/j.hjxb.20220101005
    [3]QIN Guoliang, MA Hong, WANG Shilu, ZHAO Yanhua, ZHU Ruican. Microstructure and properties of friction welded joint of aluminum alloy to alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 1-8. DOI: 10.12073/j.hjxb.20210103001
    [4]LI Huan, XU Guangpei, ZHANG Yuhui, WU Sheng, WANG Fei. Correlation between microstructure and properties of 2219/5A06 dissimilar aluminum alloy welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 8-15. DOI: 10.12073/j.hjxb.20200328001
    [5]YIN Yan, KANG Ping, LU Chao, ZHANG Yuan, ZHANG Ruihua. Microstructure and microhardness analysis of laser welded dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 71-77. DOI: 10.12073/j.hjxb.20191227002
    [6]SUN Zhuanping, YANG Xinqi, LIU Kaixuan, DU Bo. Study of technology and structure property on friction plug welding of dissimilar aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 145-150. DOI: 10.12073/j.hjxb.2019400251
    [7]XING Yanshuang1, DANG Pengfei1, LI Feng1, LIU Xuesong2. Microstructure and mechanical properties of refill friction stir spot welded dissimilar 7075/6061 aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 22-25. DOI: 10.12073/j.hjxb.2018390006
    [8]ZHANG Jin, JI Pengfei, ZHOU Jun, LIAN Yong. Effect of shoulder diameter on microstructure of dissimilar Al alloys friction stir welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 51-54.
    [9]WEN Changjin, LI Yulong, ZHAO Cheng. Ultrasonic spot welding of aluminum alloy and galvanized steel dissimilar metals sheets[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 39-42.
    [10]CHEN Yiping, SHAO Jinghui, HU Dean, CHENG Donghai. Analysis of microstructure and mechanical properties of dissimilar metal spot welded joint between magnesium alloy and steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 101-104.
  • Cited by

    Periodical cited type(2)

    1. 吴勇,孟施旭,孙清云,陈辉,夏思瑶,杨甫,夏春怀,杨汉哲. Inconel625与Inconel601合金耐高温氯离子腐蚀性能及机理的比较研究. 金属热处理. 2023(09): 208-213 .
    2. 郭枭,谷宇,韩莹,徐锴,王岩,姜英龙. Inconel 625合金堆焊金属开裂机理研究. 焊接学报. 2023(11): 117-123+135-136 . 本站查看

    Other cited types(2)

Catalog

    Article views (100) PDF downloads (41) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return