Citation: | LI Xiaodan, SUN Haojun, YIN Jun, NI Jiaqiang, ZHOU Song, AN Jinlan, ZHANG Hongjie. Laser deposition of Ti65 titanium alloy microstructure and fatigue properties[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 97-104. DOI: 10.12073/j.hjxb.20230628001 |
The effects of laser power and temperature on the high-cycle fatigue properties of Ti65 titanium alloy fabricated by laser deposition are studied by single variable method, and the microstructure, internal defects and fracture morphology of the samples are analyzed by optical microscope, ultrasonic detector and scanning electron microscope (SEM). The results show that the microstructure of the samples with different power is the basket structure, and the content of the α phase is significantly higher than that of the β phase, and the α phase in the basket structure is coarsenized at high temperature, and some massive α phases appear inside the grain, and the uniformity of the structure decreases. The fatigue limits of high-power and low-power samples at room temperature and high temperature are 454, 398.5, 371.5 MPa and 336.25 MPa, respectively, and the fatigue limits of high-power samples are more than 10% higher than those of low-power samples at the same temperature. At the same power, the fatigue limit of the room temperature sample is more than 18% higher than that of the high temperature sample, and the temperature has a greater influence on the high cycle fatigue. There are porosity defects in Ti65 titanium alloy specimens made by laser deposition, and the number of pores in low-power specimens is large and the diameter is large, and the fatigue source is homogeneously nucleated at the porosity defects. The larger the diameter of the pores, the closer the distance from the surface, the faster the crack initiation, the lower the fatigue life, the number of pores in the high-power sample is small and the diameter is small, the fatigue source is germinated in the surface crack, and the existence of defects has a great impact on the germination of cracks.
[1] |
Shi C, Nouri N, Schulze V, et al. High cycle fatigue behaviour of AISI 4140 steel manufactured by laser-powder bed fusion[J]. International Journal of Fatigue, 2023, 168: 107469. doi: 10.1016/j.ijfatigue.2022.107469
|
[2] |
Wang C D, Wang Y P, Bao Z L, et al. Characterization of microstructure and mechanical properties of titanium-based bioactive ceramics laser-deposited on titanium alloy[J]. Ceramics International, 2022, 48(19): 28678 − 28691. doi: 10.1016/j.ceramint.2022.06.182
|
[3] |
杨胶溪, 柯华, 崔哲, 等. 激光金属沉积技术研究现状与应用进展[J]. 航空制造技术, 2020, 63(10): 14 − 22.
Yang Jiaoxi, Ke Hua, Cui Zhe, et al. Research and application progress of laser metal deposition[J]. Aeronautical Manufacturing Technology, 2020, 63(10): 14 − 22.
|
[4] |
常坤, 梁恩泉, 张韧, 等. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报, 2021, 35(3): 3176 − 3182. doi: 10.11896/cldb.19100153
Chang Kun, Liang Enquan, Zhang Ren, et al. Status of metal additive manufacturing and its application research in the field of civil aviation[J]. Materials Reports, 2021, 35(3): 3176 − 3182. doi: 10.11896/cldb.19100153
|
[5] |
李晓丹, 殷俊, 倪家强, 等. 一种激光直接沉积Ti65钛合金的热处理方法: CN114959531A[P]. 2022-08-30.
Li Xiaodan, Yin Jun, Ni Jiaqiang, et al. A heat treatment method for direct laser deposition of Ti65 titanium alloy: CN114959531A[P]. 2022-08-30.
|
[6] |
冯叶. Ti65钛合金板材的高温循环氧化和变形行为研究[D]. 合肥: 中国科学技术大学, 2022.
Feng Ye. High temperature cyclic oxidation and deformation behavior of Ti65 titanium alloy plate [D]. Hefei: University of Science and Technology of China, 2022.
|
[7] |
王清江, 刘建荣, 杨锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34(4): 1 − 26. doi: 10.11868/j.issn.1005-5053.2014.4.001
Wang Qingjiang, Liu Jianrong, Yang Rui. High temperature titanium alloys: status and perspective[J]. Journal of Aeronautical Materials, 2014, 34(4): 1 − 26. doi: 10.11868/j.issn.1005-5053.2014.4.001
|
[8] |
侯金健, 高强强, 安晓婷. 国内外高温钛合金研究及应用的最新发展[J]. 热加工艺, 2014, 43(10): 11 − 15.
Hou Jinjian, Gao Qiangqiang, An Xiaoting. Latest development of domestic and international research of high-temperature titanium alloy and its application[J]. Hot Working Technology, 2014, 43(10): 11 − 15
|
[9] |
李晓丹, 倪家强, 殷俊, 等. 激光沉积Ti65钛合金的显微组织与各向异性研究[J]. 中国激光, 2023, 50(8): 209 − 216.
Li Xiaodan, Ni Jiaqiang, Yin Jun, et al. Microstructure and anisotropy of laser-deposited Ti65 titanium alloy[J]. Chinese Journal of Lasers, 2023, 50(8): 209 − 216.
|
[10] |
谭海兵, 臧健, 梁弼宁, 等. 中温热处理对Ti65合金淬火组织及室温拉伸性能的影响[J]. 材料研究学报, 2023, 37(12): 881 − 888.
Tan Haibing, Zang Jian, Liang Bining, et al. Effect of medium heat treatment on quenched microstructure and tensile properties of Ti65 alloy[J]. Chinese Journal of Materials Research, 2023, 37(12): 881 − 888.
|
[11] |
Zhang Z X, Fan J K, Li R F, et al. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet[J]. Journal of Materials Science & Technology, 2021, 75: 265 − 275.
Zhang Z X, Fan J K, Li R F, et al. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet[J]. Journal of Materials Science & Technology, 2021, 75: 265 − 275.
|
[12] |
岳颗. Ti65合金显微组织及关键高温力学性能[D]. 合肥: 中国科学技术大学, 2019.
Yue Ke. Study on microstructure and key high temperature mechanical properties of Ti65 alloy[D]. Hefei: University of Science and Technology of China, 2019.
|
[13] |
Du X, Wu Q, Zhang T, et al. Microstructure and mechanical properties of laser butt welds of selective laser melted Ta10W alloy plates with different forming directions[J]. Journal of Materials Research and Technology, 2023, 26: 8097 − 8110. doi: 10.1016/j.jmrt.2023.09.126
|
[14] |
王华明, 张述泉, 汤海波, 等. 大型钛合金结构激光快速成形技术研究进展[J]. 航空精密制造技术, 2008, 44(6): 28 − 30. doi: 10.3969/j.issn.1003-5451.2008.06.008
Wang Huaming, Zhang Shuquan, Tang Haibo, et al. Progress in laser rapid prototyping technology for large titanium alloy structures[J]. Aviation Precision Manufacturing Technology, 2008, 44(6): 28 − 30. doi: 10.3969/j.issn.1003-5451.2008.06.008
|
[15] |
Guo W S, Zhang H, Zhou Q J, et al. Microstructure evolution and corrosion behavior of TC11 laser melt deposition additive components after post-heat treatment[J]. Materials Characterization, 2024, 207: 113509. doi: 10.1016/j.matchar.2023.113509
|
[16] |
Singh N S, Deoghare B A. Microstructure, microhardness, tensile and fatigue investigation on laser shock peened Ti6Al4V manufactured by high layer thickness directed energy deposition additive manufacturing[J]. Optics & Laser Technology, 2024, 177: 111132.
|
[17] |
钱远宏, 谭华, 李静, 等. 高功率激光立体成形Ti-6Al-4V合金组织研究[J]. 稀有金属材料与工程, 2014, 43(9): 2162 − 2166.
Qian Yuanhong, Tan Hua, Li Jing, et al. Microstructure characterization of laser solid forming Ti-6Al-4V alloy by high power[J]. Rare Metal Materials and Engineering, 2014, 43(9): 2162 − 2166.
|
[18] |
衡钊, 舒林森. 激光功率对27SiMn钢激光熔覆力学性能的影响[J]. 中国激光, 2022, 49(8): 118 − 126.
Heng Zhao, Shu Linsen. Effect of laser power on mechanical properties of laser cladded 27SiMn steel[J]. Chinese Journal of Lasers, 2022, 49(8): 118 − 126.
|
[19] |
Lü H, Zhang Z L, Chen Y R, et al. The anisotropy of high cycle fatigue property and fatigue crack growth behavior of Ti-6Al-4V alloy fabricated by high-power laser metal deposition[J]. Materials Science & Engineering A, 2022, 853: 143745.
|
[20] |
杨光, 刘佳蓬, 钦兰云, 等. 激光沉积TA15钛合金高周疲劳性能研究[J]. 稀有金属, 2018, 42(11): 1134 − 1142.
Yang Guang, Liu Jiapeng, Qin Lanyun, et al. High cycle fatigue properties of laser deposited TA15 titanium alloy[J]. Chinese Journal of Rare Metals, 2018, 42(11): 1134 − 1142.
|
[21] |
Zhou S , Yu H Y , An J L, et al. Study on fatigue crack growth behavior of the TA15 titanium alloy repaired by laser deposition[J]. Engineering Failure Analysis, 2024, 161: 108276.
|
[22] |
李发智. 激光直接成形氧化铝基陶瓷气孔形成机理及控制研究[D]. 长沙: 湖南大学, 2019.
Li Fazhi. Formation mechanism and control of porosity during laser direct forming of Al2O3-based eramic[D]. Changsha: Hunan University, 2019
|
[23] |
Wu Y J, Zhou J, Wen Y, et al. Investigation on transport phenomena and molten pool dynamics during laser melting deposition of Ti-6Al-4V[C]//The 2nd International Conference on Smart Energy and New Power Systems, October 5- December 5, 2024, Zhuzhou, China. London: IOP Publishing Ltd, 2795: 012021.
|
[24] |
He B, Sun J F, Yang G, et al. Microstructure and mechanical properties of laser-deposited Ti65 near-alpha titanium alloy[J]. Applied Physics A, 2022, 128(9): 825. doi: 10.1007/s00339-022-05955-6
|
[1] | YIN Yuhuan, ZENG Caiyou, GAO Han, ZHANG Tiemin, QI Bojin, CONG Baoqiang. Effect of heat treatment on microstructure evolution and mechanical properties of 2219 aluminum alloy joint as fabricated by double-pulsed TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 42-49. DOI: 10.12073/j.hjxb.20211102003 |
[2] | LI Ju, ZHANG Tiancang, GUO Delun. Influence of heat treatment on microstructure and mechanical properties of TC17(α+β)/TC17(β) linear friction welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 97-100,120. DOI: 10.12073/j.hjxb.2018390131 |
[3] | XU Zhongfeng, LU Hao, YU Chun, YANG Yang. Microstructure and mechanical properties of 2219 aluminum alloy refilling friction stir welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 73-76. |
[4] | YAN Keng, SHI Zhiqiang, WANG Xiling. Influence of heat treatment on microstructure and mechanical properties of spray formed 7xxx series aluminum alloy TIG weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (3): 33-36,40. |
[5] | ZHU Hai, ZHENG Haiyang, GUO Yarding. Effects of heat treatment technology on mechanical properties of friction welding drill rod[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 93-96. |
[6] | MA Tiejun, YANG Siqian, ZHANG Yong, LI Wenya. Mechanical properties and microstructure features of linear friction welded TC4 titanium alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 17-20. |
[7] | YAO Wei, GONG Shui-li, CHEN Li. Microstructure and mechanical properties of laser welded joint of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 69-72,76. |
[8] | YAN Keng, CAO Liang, CHEN Hua-bin. Effect of tool tilt angle on formation and mechanical property of FSW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 35-38. |
[9] | Sun Daqian, Zhou Zhenfeng, Ren Zhenan. Microstructure and Mechanical Properties of Austempered Ductile Iron Welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (4): 202-207. |
[10] | Shi Yaowu, Zhou Ningning, Zhang Xinping, Tang Wei, Lei Yongping. Microshear test and its evaluation to mechanical properties of welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (4): 235-240. |
1. |
朱新杰,李永涛,邓明晰,姚森,张洁. 焊缝散射条件下板中超声导波直线阵列多帧变秩成像检测. 焊接学报. 2025(01): 80-86 .
![]() |