Citation: | XUE Long, MAO Xuesong, HUANG Jiqiang, ZHANG Ruiying, WANG Chun. Research and development of underwater laser repair[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 120-128. DOI: 10.12073/j.hjxb.20230513001 |
The capability of marine engineering maintenance and emergency repair is not only crucial for ocean exploration but also a powerful support for infrastructure such as nuclear and hydraulic power industry. Among all the techniques in this field, underwater laser repair has been one of the most popular research directions which holds great promise. Laser repair as a commonly used technology in ordinary environment has been successfully translated to numerous marine engineering applications researched by different industries such as nuclear power, hydraulic power, petroleum extraction and transportation, and ship maintenance. To further investigate the underwater laser repair technique, a comprehensive review has been done to understand current challenges and corresponding solutions. The process problems and their mechanisms of laser repair have been investigated in different methodologies such as underwater wet, hyperbaric dry and local dry method, then the improvement and research progress of main problem's mainstream solutions are compared, followed by the discussion and suggestion of the future research directions.
[1] |
董振华. 船舶维修保养技术经济性研究[D]. 大连: 大连海事大学, 2009.
Dong Zhenhua. Research on ship maintenance technology and economy [D]. Dalian : Dalian Maritime University, 2009.
|
[2] |
赵永涛, 殷敏谦, 曾红军, 等. 海洋平台结构损伤检测研究[J]. 中国海洋平台, 2008, 23(5): 23 − 26. doi: 10.3969/j.issn.1001-4500.2008.05.005
Zhao Yongtao, Yin Minqian, Zeng Hongjun, et al. Research on structural damage detection of offshore platforms[J]. China Offshore Platforms, 2008, 23(5): 23 − 26. doi: 10.3969/j.issn.1001-4500.2008.05.005
|
[3] |
王家淳. 激光焊接技术的发展与展望[J]. 激光技术, 2001(1): 48 − 54. doi: 10.3969/j.issn.1001-3806.2001.01.004
Wang Jiachun. Development and prospect of laser welding technology[J]. Laser Technology, 2001(1): 48 − 54. doi: 10.3969/j.issn.1001-3806.2001.01.004
|
[4] |
Sun G F, Wang Z D, Lu Y, et al. Investigation on microstructure and mechanical properties of NV E690 steel joint by laser-MIG hybrid welding[J]. Materials & Design, 2017, 127: 297 − 310.
|
[5] |
Hino T, Tamura M, Tanaka Y, et al. Development of underwater laser cladding and underwater laser seal welding techniques for reactor components[J]. Journal of Power and Energy Systems, 2009, 3(1): 51 − 59. doi: 10.1299/jpes.3.51
|
[6] |
王伟, 王泽明, 魏连峰, 等. 水下激光加工技术在核电维修领域的应用现状及发展[J]. 电焊机, 2020, 50(7): 74 − 79. doi: 10.7512/j.issn.1001-2303.2020.07.11
Wang Wei, Wang Zeming, Wei Lianfeng, et al. Application status and development of underwater laser processing technology in the field of nuclear power maintenance[J]. Electric Welding Machine, 2020, 50(7): 74 − 79. doi: 10.7512/j.issn.1001-2303.2020.07.11
|
[7] |
Sun G, Wang Z, Lu Y, et al. Underwater laser welding/cladding for high-performance repair of marine metal materials: A review[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 1 − 19. doi: 10.1186/s10033-021-00666-0
|
[8] |
Parshin S, Levchenko A. Underwater hyperbaric dry welding of high strength steel arctic oil and gas pipelines[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2020: 012159.
|
[9] |
Shannon G J, Watson J, Deans W F. Investigation into the underwater laser welding of steel[J]. Journal of Laser Applications, 1994, 6(4): 223 − 229. doi: 10.2351/1.4745360
|
[10] |
Shannon G J, McNaught W, Deans W F, et al. High power laser welding in hyperbaric gas and water environments[J]. Journal of Laser Applications, 1997, 9(3): 129 − 136. doi: 10.2351/1.4745452
|
[11] |
Guo N, Xing X, Zhao H, et al. Effect of water depth on weld quality and welding process in underwater fiber laser welding[J]. Materials & Design, 2017, 115: 112 − 120.
|
[12] |
秦航, 蔡志海, 朱加雷, 等. TC4钛合金水下湿法激光焊接焊缝组织与性能[J]. 焊接学报, 2019, 40(12): 143 − 148.
Qin Hang, Cai Zhihai, Zhu Jialei, et al. Microstructure and properties of welding seam of TC4 titanium alloy by underwater wet laser welding[J]. Transactions of the China Welding Institution, 2019, 40(12): 143 − 148.
|
[13] |
邢霄. 304不锈钢水下激光焊接排水装置设计及焊接工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
Xing Xiao. Design and welding technology of 304 stainless steel underwater laser welding drainage device [D]. Harbin: Harbin Institute of Technology, 2017.
|
[14] |
李明, 张宏超, 沈中华, 等. 激光导致水击穿和等离子体形成过程的物理分析[J]. 光子学报, 2005(11): 12 − 16.
Li Ming, Zhang Hongchao, Shen Zhonghua, et al. Physical analysis of water breakdown and plasma formation induced by laser[J]. Acta Photonica Sinica, 2005(11): 12 − 16.
|
[15] |
Zhang X, Chen W, Ashida E, et al. Relationship between weld quality and optical emissions in underwater Nd: YAG laser welding[J]. Optics and Lasers in Engineering, 2004, 41(5): 717 − 730. doi: 10.1016/S0143-8166(03)00031-9
|
[16] |
Zhang X, Chen W, Ashida E, et al. Laser–material interaction and process sensing in underwater Nd: yttrium–aluminum–garnet laser welding[J]. Journal of Laser Applications, 2003, 15(4): 279 − 284. doi: 10.2351/1.1620002
|
[17] |
Zhang X, Ashida E, Shono S, et al. Effect of shielding conditions of local dry cavity on weld quality in underwater Nd: YAG laser welding[J]. Journal of Materials Processing Technology, 2006, 174(1-3): 34 − 41. doi: 10.1016/j.jmatprotec.2004.12.009
|
[18] |
Mullick S, Madhukar Y K, Roy S, et al. An investigation of energy loss mechanisms in water-jet assisted underwater laser cutting process using an analytical model[J]. International Journal of Machine Tools and Manufacture, 2015, 91: 62 − 75. doi: 10.1016/j.ijmachtools.2015.02.005
|
[19] |
秦航, 蔡志海, 张平, 等. 中碳钢水下湿法激光焊接焊缝成形行为与性能[J]. 中国表面工程, 2019, 32(3): 130 − 137. doi: 10.11933/j.issn.1007-9289.20190123002
Qin Hang, Cai Zhihai, Zhang Ping, et al. Weld forming behavior and properties of medium carbon steel by underwater wet laser welding[J]. China Surface Engineering, 2019, 32(3): 130 − 137. doi: 10.11933/j.issn.1007-9289.20190123002
|
[20] |
Sakate P M, Mullick S, Gopinath M. An investigation on physical phenomena of water-jet assisted underwater wet laser welding technique under continuous and pulsed mode operation[J]. Optik, 2021, 242: 167272. doi: 10.1016/j.ijleo.2021.167272
|
[21] |
Wen X, Jin G, Cui X, et al. Underwater wet laser cladding on 316L stainless steel: A protective material assisted method[J]. Optics & Laser Technology, 2019, 111: 814 − 824.
|
[22] |
冯相如. 水环境下Cu基合金激光沉积层的成形机理及性能调控[D]. 哈尔滨: 哈尔滨工程大学, 2019.
Feng Xiangru. Formation mechanism and property control of laser deposited Cu-based alloys in water environment [D]. Harbin: Harbin Engineering University, 2019.
|
[23] |
吴广成, 张晓晖, 饶炯辉. 水下激光光束空间分布特性的实验研究[J]. 激光与红外, 2009, 39(2): 133 − 136. doi: 10.3969/j.issn.1001-5078.2009.02.004
Wu Guangcheng, Zhang Xiaohui, Rao Jionghui. Experimental study on spatial distribution characteristics of underwater laser beam[J]. Laser and Infrared, 2009, 39(2): 133 − 136. doi: 10.3969/j.issn.1001-5078.2009.02.004
|
[24] |
李娜, 汤少华, 陆梦洁, 等. 激光波长对水体中激光诱导击穿光谱和空化气泡演化的影响[J]. 光学学报, 2002, 42(18): 41 − 48.
Li Na, Tang Shaohua, Lu Mengjie, et al. Effect of laser wavelength on laser-induced breakdown spectra and cavitation bubble evolution in water[J]. Acta Optica Sinica, 2002, 42(18): 41 − 48.
|
[25] |
Long J, Eliceiri M H, Ouyang Y, et al. Effects of immersion depth on the dynamics of cavitation bubbles generated during ns laser ablation of submerged targets[J]. Optics and Lasers in Engineering, 2021, 137: 106334. doi: 10.1016/j.optlaseng.2020.106334
|
[26] |
鲍家定. 水层特性对水下激光划切单晶硅质量的影响研究[D]. 桂林: 桂林电子科技大学, 2021.
Bao Jiading. Study on the effect of water layer characteristics on the quality of underwater laser cutting monocrystalline silicon [D]. Guilin : Guilin University of Electronic Science and Technology, 2021.
|
[27] |
谢明. 激光诱导空化微成形实验研究[D]. 广州: 广东工业大学, 2021.
Xie Ming. Experimental study on laser induced cavitation micro-forming [D]. Guangzhou: Guangdong University of Technology, 2021.
|
[28] |
Zhao R, Liang Z, Xu R, et al. Dynamics of laser-induced cavitation bubble near solid boundary[J]. Japanese Journal of Applied Physics, 2008, 47(7R): 5482. doi: 10.1143/JJAP.47.5482
|
[29] |
Chen X, Xu R Q, Shen Z H, et al. Optical investigation of cavitation erosion by laser-induced bubble collapse[J]. Optics & Laser Technology, 2004, 36(3): 197 − 203.
|
[30] |
强豪. 水环境激光空泡与金属靶材相互作用过程及机理研究[D]. 南京: 南京理工大学, 2018.
Qiang Hao. Study on the interaction process and mechanism between laser void and metal target in water environment [D]. Nanjing : Nanjing University of Science and Technology, 2018.
|
[31] |
蔡志海, 尤家玉, 秦航, 等. 铝青铜水下湿法激光焊接焊缝成形与力学性能[J]. 装甲兵工程学院学报, 2019, 33(1): 104 − 109.
Cai Zhihai, You Jiayu, Qin Hang, et al. Weld forming and mechanical properties of aluminum bronze by underwater wet laser welding[J]. Journal of Armored Forces, 2019, 33(1): 104 − 109.
|
[32] |
Kumar V, Hussain M, Raza M S, et al. Fiber laser welding of thin nickel sheets in air and water medium[J]. Arabian Journal for Science and Engineering, 2017, 42: 1765 − 1773. doi: 10.1007/s13369-016-2305-1
|
[33] |
Feng X, Cui X, Zheng W, et al. Effect of the protective materials and water on the repairing quality of nickel aluminum bronze during underwater wet laser repairing[J]. Optics & Laser Technology, 2019, 114: 140 − 145.
|
[34] |
肖镌璐. 高压干法水下激光熔覆表面修复工艺研究[D]. 北京: 北京化工大学, 2020.
Xiao Juanlu. Research on surface repair technology of high pressure dry underwater laser cladding [D]. Beijing : Beijing University of Chemical Technology, 2020.
|
[35] |
邵长磊, 肖镌璐, 朱加雷, 等. 激光填丝熔覆表面修复工艺研究及压力环境验证[J]. 北京石油化工学院学报, 2021, 29(4): 14 − 18.
Shao Changlei, Xiao Juanlu, Zhu Jialei, et al. Study on surface repair technology of laser wire cladding and verification of pressure environment[J]. Journal of Beijing Institute of Petrochemical Technology, 2021, 29(4): 14 − 18.
|
[36] |
Pang S, Hirano K, Fabbro R, et al. Explanation of penetration depth variation during laser welding under variable ambient pressure[J]. Journal of Laser Applications, 2015, 27(2): 022007. doi: 10.2351/1.4913455
|
[37] |
Luo M, Hu R, Li Q, et al. Physical understanding of keyhole and weld pool dynamics in laser welding under different water pressures[J]. International Journal of Heat and Mass Transfer, 2019, 137: 328 − 336. doi: 10.1016/j.ijheatmasstransfer.2019.03.129
|
[38] |
Su J, Zhang Z, Xiao M, et al. Effects of ambient pressure on single-pulse laser processing of austenite stainless steel[J]. Journal of Materials Processing Technology, 2019, 263: 59 − 72. doi: 10.1016/j.jmatprotec.2018.07.015
|
[39] |
Wang K, Shao C, Jiao X, et al. Investigation on microstructure and properties of duplex stainless steel welds by underwater laser welding with different shielding gas[J]. Materials, 2021, 14(17): 4774. doi: 10.3390/ma14174774
|
[40] |
Wang K, Jiao X, Zhu J, et al. Effect of nitrogen protection on weld metal microstructure and intergranular behavior of S32101 duplex stainless steel 15 m water depth hyperbaric laser underwater welding[J]. Advances in Mechanical Engineering, 2022, 14(1): 1 − 12.
|
[41] |
Luo Y, Tang X, Lu F, et al. Effect of subatmospheric pressure on plasma plume in fiber laser welding[J]. Journal of Materials Processing Technology, 2015, 215: 219 − 224. doi: 10.1016/j.jmatprotec.2014.08.011
|
[42] |
史俊锋. CO2激光深熔焊接光致等离子体行为的数值模拟[D]. 北京: 北京工业大学, 2001.
Shi Junfeng. Numerical simulation of photoplasma behavior in CO2 laser deep penetration welding [D]. Beijing : Beijing University of Technology, 2001.
|
[43] |
王永贵. 侧吹气体对光致等离子体结构和屏蔽效应的影响[D]. 上海: 上海交通大学, 2014.
Wang Yonggui. Influence of side-blown gas on the structure and shielding effect of photoplasma [D]. Shanghai : Shanghai Jiao Tong University, 2014.
|
[44] |
Kawahito Y, Kinoshita K, Matsumoto N, et al. Effect of weakly ionised plasma on penetration of stainless steel weld produced with ultra high power density fibre laser[J]. Science and Technology of Welding and Joining, 2008, 13(8): 749 − 753. doi: 10.1179/136217108X356971
|
[45] |
Long J, Zhang L J, Ning J, et al. Dynamic behavior of plasma and molten pool of pure titanium during hyperbaric laser welding[J]. Infrared Physics & Technology, 2021, 115: 103686.
|
[46] |
Long J, Zhang L J, Zhang L L, et al. Towards better understanding of hyperbaric fiber laser spot welding of metallic material[J]. Journal of Manufacturing Processes, 2020, 56: 372 − 381. doi: 10.1016/j.jmapro.2020.04.087
|
[47] |
孙大为. 高功率激光焊接等离子体三维重建及能量传输研究[D]. 上海: 上海交通大学, 2015.
Sun Dawei. 3D reconstruction and energy transfer of high power laser welding plasma [D]. Shanghai : Shanghai Jiao Tong University, 2015.
|
[48] |
Qiu W, Yang L, Zhao S, et al. A study on plasma plume fluctuation characteristic during A304 stainless steel laser welding[J]. Journal of Manufacturing Processes, 2018, 33: 1 − 9.
|
[49] |
Chida I, Mukai N, Kono W, et al. Development of multifunction laser welding head as maintenance technologies against stress corrosion cracking for nuclear power reactors[C]//International Conference on Nuclear Engineering, 2009: 319 − 325.
|
[50] |
Hamada Y, Nagasawa K, Oowaki K, et al. Development of high reliable welding method with underwater laser welding technology for stainless steel made structures installed in underwater[C]//Japan Society of Maintenology. Annual Meeting of Japan Society of Maintenology, Tokyo, 2019: 24 − 26.
|
[51] |
姚杞. 不锈钢水下激光焊接研究[D]. 天津: 天津大学, 2014.
Yao Qi. Research on underwater laser welding of stainless steel [D]. Tianjin : Tianjin University, 2014.
|
[52] |
李丛伟, 邵长磊, 朱加雷, 等. 304不锈钢局部干法水下激光填丝熔覆层微观组织及性能[J]. 焊接学报, 2019, 42(8): 67 − 74.
Li Congwei, Shao Changlei, Zhu Jialei, et al. Microstructure and properties of 304 stainless steel localized dry process underwater laser wire cladding[J]. Transactions of the China Welding Institution, 2019, 42(8): 67 − 74.
|
[53] |
Di X, Ji S, Cheng F, et al. Effect of cooling rate on microstructure, inclusions and mechanical properties of weld metal in simulated local dry underwater welding[J]. Materials & Design, 2015, 88: 505 − 513.
|
[54] |
黄尊月. 水介质下激光焊接机理及关键技术研究[D]. 天津: 天津大学, 2018.
Huang Zunyue. Research on mechanism and key technology of laser welding in water medium [D]. Tianjin : Tianjin University, 2018.
|
[55] |
谷占飞. 活性剂辅助激光焊接组织性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2015.
Gu Zhanfei. Study on microstructure and properties of activator-assisted laser welding [D]. Harbin: Harbin University of Science and Technology, 2015.
|
[56] |
Huang Z Y, Luo Z, Ao S, et al. Underwater laser weld bowing distortion behavior and mechanism of thin 304 stainless steel plates[J]. Optics & Laser Technology, 2018, 106: 123 − 135.
|
[57] |
Guo N, Wu D, Wang G, et al. Investigation on underwater wire-feed laser deposition of 5052 aluminum alloy[J]. Journal of Manufacturing Processes, 2022, 76: 687 − 694. doi: 10.1016/j.jmapro.2022.02.050
|
[58] |
Fu Y, Guo N, Cheng Q, et al. In-situ formation of laser-cladded layer on Ti-6Al-4 V titanium alloy in underwater environment[J]. Optics and Lasers in Engineering, 2020, 131: 106104. doi: 10.1016/j.optlaseng.2020.106104
|
[59] |
Guo N, Wu D, Yu M, et al. Microstructure and properties of Ti-6Al-4V titanium alloy prepared by underwater wire feeding laser deposition[J]. Journal of Manufacturing Processes, 2022, 73: 269 − 278. doi: 10.1016/j.jmapro.2021.11.002
|
[60] |
Liu Y, Li C, Huang X F, et al. Investigation on solidification structure and temperature field with novel processing of synchronous powder-feeding underwater laser cladding[J]. Journal of Materials Processing Technology, 2021, 296: 117166. doi: 10.1016/j.jmatprotec.2021.117166
|
[61] |
Liu C, Guo N, Cheng Q, et al. In situ formation of laser-cladded layer on thin-walled tube of aluminum alloy in underwater environment[J]. Materials, 2021, 14(16): 4729. doi: 10.3390/ma14164729
|
[62] |
郭宁, 王美荣, 郭伟, 等. 水下湿法自保护药芯焊丝[J]. 焊接学报, 2014, 35(5): 13 − 16.
Guo Ning, Wang Meirong, Guo Wei, et al. Underwater wet self-protected flux-cored wire[J]. Transactions of the China Welding Institution, 2014, 35(5): 13 − 16.
|
[63] |
Han Yongquan, Han Jiao, Chen Yan, et al. Stability of fiber laser-MIG hybrid welding of high strength aluminum alloy[J]. China Welding, 2021, 30(3): 7 − 11.
|
[64] |
江东远. 6061铝合金超声波辅助激光焊接工艺研究[D]. 长沙: 湖南大学, 2020.
Jiang Dongyuan. Study on ultrasound-assisted laser welding of 6061 aluminum alloy [D]. Changsha: Hunan University, 2020.
|
[65] |
张小凡, 张建勋, 王浩, 等. 稳态磁场辅助激光焊技术研究现状与展望[J]. 热加工工艺, 2022, 51(13): 1 − 8.
Zhang Xiaofan, Zhang Jianxun, Wang Hao, et al. Research status and prospect of steady state magnetic field assisted laser welding technology[J]. Hot Working Technology, 2022, 51(13): 1 − 8.
|
[1] | REN Jiaxin, HUANG Jiqiang, GUO Liwei, XUE Long, ZHANG Ruiying. Welding fume behavior in the drainage chamber for underwater local dry welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20241018003 |
[2] | LI Xingshuai, ZHANG Qinghua, ZHAO Yongqing, CHEN Yingjie, SUN Qingjie, LIU Yibo, TIAN Yifeng. Optimization of local dry underwater laser welding process for stainless steel based on orthogonal experiment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(5): 42-49. DOI: 10.12073/j.hjxb.20240131001 |
[3] | SHAO Zhujing, CHENG Fangjie, ZHANG Shuai, WANG Dongpo, CAO Jun. Investigation on arc preheating of local dry underwater welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(11): 124-128. DOI: 10.12073/j.hjxb.2018390286 |
[4] | ZHANG Shuaifeng<sup>1</sup>, CHENG Fangjie<sup>1,2</sup>, WANG Dongpo<sup>1,2</sup>, GUO Hongwei<sup>3</sup>, XU Wei<sup>3</sup>. Optimization of underwater welding process in stationary local dry cavity and analysis of welding joint properties[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(9): 99-104. DOI: 10.12073/j.hjxb.2018390232 |
[5] | SHEN Xiangxing1, CHENG Fangjie1,2, DI Xinjie1, WANG Dongpo1,2, CAO jun3. Local-dry underwater welding preheating technology and development of special drain cover[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 112-116. DOI: 10.12073/j.hjxb.2018390080 |
[6] | WANG Zhenmin, XIE Fangxiang, FENG Yunliang, ZHANG Qin. Underwater robot local dry welding system[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 5-8. |
[7] | LI Kai, GAO Hongming, LI Haichao, GONG Shan, XIE Hao. Generating mechanism of repelled transfer mode in dry hyperbaric GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 35-38. |
[8] | LI Lan, XUE Long, HUANG Junfen, HUANG Jiqiang. Simulation of fluid in cylindrical drainage cover for underwater local dry welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 43-46,107. |
[9] | LI Kai, GAO Hongming, LI Haichao, DING Yang. Effect of welding polar on dry hyperbaric GMAW process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 108-112. |
[10] | ZHU Jialei, JIAO Xiangdong, ZHOU Canfeng, SHEN Qiuping, YU Yan, Gao Hui, DONG Jihong. Local dry automatic underwater welding of 304 stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 29-32. |
1. |
王佳杰,张颖,张敬强,肖雪,孙浩. 不等厚板低匹配对接接头弯曲承载能力设计. 机械制造文摘(焊接分册). 2019(05): 12-16 .
![]() |