Citation: | MENG Manding, WEI Jinshan, AN Tongbang, MA Chengyong, PENG Yun. Effects of Si content on microstructure and toughness of the 800 MPa grade high-strength low-alloy deposited metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 93-100. DOI: 10.12073/j.hjxb.20230425002 |
The influence of silicon (Si) on the microstructure and toughness of 800 MPa grade high-strength low-alloy (HSLA) deposited metals was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron backscatter diffraction (EBSD). Experimental findings revealed that the yield strength of the deposited metal (0.035C-0.45Si-1.47Mn-2.56Ni-0.68Cr-0.62Mo) increased from 850 MPa to 895 MPa, and the tensile strength rose from 917 MPa to 954 MPa, while the impact energy absorption at −50 ℃ decreased from 115 J to 73 J, as the Si content increased from 0.45% to 0.66%. The microstructure of the deposited metal with 0.45% Si primarily comprised lath bainite, with a smaller proportion of granular bainite and lath martensite. However, with an increase in Si content to 0.66%, the microstructure predominantly featured slender lath-shaped martensite, accompanied by some lath bainite. This increase in Si content from 0.45% to 0.66% led to a reduction in the transformation temperature of austenite → bainite/martensite mixed structure. As the Si content increased, the lath substructure and block substructure changed from interlaced distribution to parallel distribution, and both become slender. However, the size of packet substructure increased significantly, which reduces the proportion of the large angle grain boundary of the deposited metal, leading to a decrease in its impact toughness.
[1] |
魏世同, 孙健, 刘景武, 等. V含量及回火工艺对高强钢TIG焊熔敷金属组织性能的影响[J]. 焊接学报, 2020, 41(11): 1 − 6.
Wei Shitong, Sun Jian, Liu Jingwu, et al. Effect of V content and tempering treatment on microstructure and mechanical properties of the high strength steel TIG weld metal[J]. Transactions of the China Welding Institution, 2020, 41(11): 1 − 6.
|
[2] |
栗卓新, 马司鸣, HEE Jin Kim. X100/X120管线钢焊接接头强韧化研究进展[J]. 电焊机, 2013, 43(4): 1 − 7.
Li Zhuoxin, Ma Siming, HEE Jin Kim. Research progress of strength and toughness of weld joint for X100/X120 pipeline steels[J]. Electric Welding Machine, 2013, 43(4): 1 − 7.
|
[3] |
Liu J, Sun J, Wei S, et al. The effect of nickel contents on the microstructure evolution and toughness of 800 MPa grade low carbon bainite deposited metal[J]. Crystals, 2021, 11(6): 709. doi: 10.3390/cryst11060709
|
[4] |
尹士科, 王移山, 彭云. 不同强度级别低合金钢焊缝金属的组织特征及其对韧性的影响[J]. 钢铁研究学报, 2014, 26(7): 55 − 60.
Yin Shike, Wang Yishan, Peng Yun. Microstructure character and its effect on toughness for weld metals with different strength grades[J]. Journal of Iron and Steel Research, 2014, 26(7): 55 − 60.
|
[5] |
李学达, 李春雨, 曹宁, 等. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967 − 976.
Li Xueda, Li Chunyu, Cao Ning, et al. Crystallography of reverted austenite in the intercritically reheated coarse-grained heat-affected zone of high strength pipeline steel[J]. Acta Metallurgica Sinica, 2021, 57(8): 967 − 976.
|
[6] |
彭云, 王爱华, 肖红军, 等. Cu对690 MPa级HSLA钢熔敷金属组织形成和细化的作用[J]. 金属学报, 2012, 48(11): 1281 − 1289. doi: 10.3724/SP.J.1037.2012.00084
Peng Yun, Wang Aihua, Xiao Hongjun, et al. Effect of Cu on microstructure forming and refining of weld metal in 690 MPa grade HSLA steel[J]. Acta Metallurgica Sinica, 2012, 48(11): 1281 − 1289. doi: 10.3724/SP.J.1037.2012.00084
|
[7] |
于少飞, 钱百年, 国旭明. ULCB熔敷金属组织与碳、氧含量对力学性能的影响[J]. 金属学报, 2005(10): 76 − 80.
Yu Shaofei, Qian Bainian, Guo Xuming. Microstructure of ULCB deposited metal and effect of carbon and oxygen contents on mechanical property[J]. Acta Metallurgica Sinica, 2005(10): 76 − 80.
|
[8] |
Wang C, Wang M, Shi J, et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel[J]. Scripta Materialia, 2008, 58(6): 492 − 495. doi: 10.1016/j.scriptamat.2007.10.053
|
[9] |
Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel[J]. Acta Materialia, 2006, 54(5): 1279 − 1288. doi: 10.1016/j.actamat.2005.11.001
|
[10] |
吴彬彬. 高强度低合金钢晶体学特征及其成分-工艺-性能关系研究[D]. 北京: 北京科技大学, 2020.
Wu Binbin. Study on crystallographic characteristics of high strength low alloy steel and its composition-process-performance relationship[D]. Beijing: University of Science and Technology Beijing, 2020.
|
[11] |
Cao R, Chan Z S, Yuan J J, et al. The effects of silicon and copper on microstructures, tensile and Charpy properties of weld metals by refined X120 wire[J]. Materials Science and Engineering:A, 2018, 718: 350 − 362. doi: 10.1016/j.msea.2018.01.080
|
[12] |
张天理, 武雯, 于航, 等. 合金元素对高强钢焊缝金属贝氏体形成及力学性能影响的研究进展[J]. 中国机械工程, 2021, 32(14): 1743 − 1756.
Zhang Tianli, Wu Wen, Yu Hang, et al. Research progresses on influences of alloying elements on formation of bainite and mechanical properties for high-strength steel weld metals[J]. China Mechanical Engineering, 2021, 32(14): 1743 − 1756.
|
[13] |
左越, 周世同, 李昭东, 等. V和Si对珠光体车轮钢显微组织和力学性能的影响规律[J]. 材料研究学报, 2016, 30(6): 401 − 408.
Zuo Yue, Zhou Shitong, Li Zhaodong, et al. Effect of V and Si on microstructure and mechanical properties of medium-carbon pearlitic steels for wheel[J]. Chinese Journal of Materials Research, 2016, 30(6): 401 − 408.
|
[14] |
Mao G, Cao R, Cayron C, et al. Microstructural evolution and mechanical property development with nickel addition in low-carbon weld butt joints[J]. Journal of Materials Processing Technology, 2018, 262: 638 − 649. doi: 10.1016/j.jmatprotec.2018.07.009
|
[15] |
Niessen F, Gazder A A, Hald J, et al. Multiscale in-situ studies of strain-induced martensite formation in inter-critically annealed extra-low-carbon martensitic stainless steel[J]. Acta Materialia, 2021, 220: 117339. doi: 10.1016/j.actamat.2021.117339
|
[16] |
张文钺. 焊接冶金学: 基本原理[M]. 北京: 机械工业出版社, 1995.
Zhang Wenyue. Welding metallurgy: basic principles[M]. Beijing: China Machine Press, 1995.
|
[17] |
赵乃勤. 合金固态相变[M]. 长沙: 中南大学出版社, 2008.
Zhao Naiqin. Solid phase transformations in alloys[M]. Changsha: Central South University Press, 2008.
|
[18] |
陈剑虹, 曹睿. 焊缝金属解理断裂微观机理[J]. 金属学报, 2017, 53(11): 1427 − 1444.
Chen Jianhong, Cao Rui. Micromechanism of cleavage fracture of weld metals[J]. Acta Metallurgica Sinica, 2017, 53(11): 1427 − 1444.
|
[19] |
安同邦, 魏金山, 单际国, 等. 保护气成分对1 000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575 − 584.
An Tongbang, Wei Jinshan, Shan Jiguo, et al. Influence of shielding gas composition on microstructure characteristics of 1000 MPa grade deposited metals[J]. Acta Metallurgica Sinica, 2019, 55(5): 575 − 584.
|
[1] | TANG Cunjiang, AN Tongbang, PENG Yun, LIN Chuncheng, MA Chengyong, LIU Xuming. Effect of heat input on microstructure and mechanical properties of weld metal of 690 MPa grade HSLA steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 110-119. DOI: 10.12073/j.hjxb.20230501001 |
[2] | YU Tingxiang, FENG Wei, CHEN Bo, ZHANG Qingsu, ZHOU Baojin, LIU Xin, LIU Manyu. Mechanism of heat treatment temperature on microstructure and properties in deposited metal of 1000 MPa grade high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 97-104, 112. DOI: 10.12073/j.hjxb.20231103001 |
[3] | WANG Xiaowei, ZHANG Bin, ZENG Ruchuan, YAN Zhaoyang, CHEN Shujun. Microstructure and mechanical properties of welds at keyhole closures in variable-polarity plasma arc welding of Al alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 1-6. DOI: 10.12073/j.hjxb.20230402001 |
[4] | JIN Xiaokun, ZHANG Shichao, DIAO Wangzhan, DU Jinfeng, LIANG Jun, ZHANG Zheng. Effect of aging time on the microstructure and mechanical properties of the SP2215 steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 95-105. DOI: 10.12073/j.hjxb.20221028006 |
[5] | LIU Huijie, GAO Yisong, ZHANG Quansheng, ZHAO Huihui. Microstructure and mechanical properties of friction stir welded joint of 2A14-T4 aluminum alloy thick plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 20-24, 42. DOI: 10.12073/j.hjxb.20210615001 |
[6] | WANG Hu, JIN Likun, PENG Yun. Microstructure and mechanical properties of joints of a new Al-Mg-Mn-Er alloy by TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 74-79. DOI: 10.12073/j.hjxb.20190924002 |
[7] | GAO Chong, LI Shulei, LIU Zhenshan, ZHAO Jingwei, ZHAO Pizhi. Effect of travel speeds on microstructures and mechanical properties of friction-stir welded 5754 aluminum alloy sheets[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 80-86. DOI: 10.12073/j.hjxb.20190921002 |
[8] | ZHOU Li, ZHANG Renxiao, SHU Fengyuan, HUANG Yongxian, FENG Jicai. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 80-84. DOI: 10.12073/j.hjxb.2019400076 |
[9] | QIAO Jisen, YU Jiangrui, GOU Ningnian, YUAN Xiaoer. Development of microstructure influence on mechanical properties of fusion welding joints of aluminium alloy 2A12[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 5-8. |
[10] | YANG Yang, CHEN Zhongping, LI Dahe, LIU Xiaohui. Microstructure and mechanical properties of Monel alloy copper explosive clad interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 53-56. |