Citation: | YANG Gaolin, ZHENG Quanhang, QIAN Haokai, FAN Wen, ZHANG Qunli, SHI Yuelin, YAO Jianhua. Influence mechanism and improvement strategy of aspect ratio on the poor fusion between laser cladding channels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 49-56. DOI: 10.12073/j.hjxb.20230307002 |
谭文, 刘文今, 贾俊红. 激光熔覆Fe-C-Si-B的研究[J]. 金属热处理, 2000(1): 15 − 17. doi: 10.3969/j.issn.0254-6051.2000.01.005
Tan Wen, Liu Wenjin, Jia Junhong. Research on laser cladding Fe-C-Si-B[J]. Heat Treatment of Metals, 2000(1): 15 − 17. doi: 10.3969/j.issn.0254-6051.2000.01.005
|
惠洪帅, 刘长军. 激光熔覆设备的技术升级及应用[J]. 能源技术与管理, 2022, 47(5): 197 − 198.
Hui Hongshuai, Liu Changjun. Technical upgrading and application of laser cladding equipment[J]. Energy Technology and Management, 2022, 47(5): 197 − 198.
|
孙拂晓. 激光熔覆技术研究[J]. 激光杂志, 2010, 31(4): 49 − 50.
Sun Fuxiao. Research on laser cladding technology[J]. Laser Journal, 2010, 31(4): 49 − 50.
|
Wang Liwei, Chen Shujun, Xiao Jun, et al. Droplet-targeting laser hybrid indirect arc for additive manufacturing technology−A preliminary study[J]. China Welding, 2020, 29(1): 50 − 55.
|
王洪潇, 王春生, 何广忠, 等. 不锈钢管自动非熔化极惰性气体钨极保护焊环焊工艺研究[J]. 城市轨道交通研究, 2019, 22(2): 26 − 29.
Wang Hongxiao, Wang Chunsheng, He Guangzhong, et al. The investigation of the automatic non-molten inert gas tungsten shielded welding process for stainless steel pipe[J]. Urban Mass Transit, 2019, 22(2): 26 − 29.
|
Li Xiaoping, Liu Xiao, Li Runzhou, et al. Microstructure and property research on welded joints of 7xxx aluminum alloy welding wire TIG for 7075 aluminum alloy[J]. China Welding, 2021, 30(4): 58 − 64.
|
Imamfauzie R, Che Jamil M S, Samad Z, et al. Microstructure analysis and mechanical characteristics of tungsten inert gas and metal inert gas welded AA6082-T6 tubular joint: A comparative study[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 17 − 24. doi: 10.1016/S1003-6326(17)60003-7
|
Han Yongquan, Han Jiao, Chen Yan, et al. Stability of fiber laser-MIG hybrid welding of high strength aluminum alloy[J]. China Welding, 2021, 30(3): 7 − 11.
|
徐重. 等离子表面冶金技术的现状与发展[J]. 中国工程科学, 2002, 4(2): 36 − 41.
Xu Chong. Present situation and development of plasma surface metallurgy technology[J]. Strategic Study of Chinese Academy of Engineering, 2002, 4(2): 36 − 41.
|
周润猛, 张立新, 胡雪, 等. 等离子堆焊硬质堆焊层性能研究现状与分析[J]. 新疆农机化, 2022(2): 31 − 34.
Zhou Runmeng, Zhang Lixin, Hu Xue, et al. Research status and analysis of plasma surfacing hard surfacing layer performance[J]. Xinjiang Agricultural Mechanization, 2022(2): 31 − 34.
|
朱明冬, 吴冰洁, 曹立彦, 等. 304LN不锈钢表面激光熔覆钴基合金组织和性能[J]. 焊接学报, 2022, 43(8): 48 − 53,86.
Zhu Mingdong, Wu Bingjie, Cao Liyan, et al. Microstructure and properties of laser cladding cobalt-based alloy on 304 LN stainless steel surface[J]. Transactions of the China Welding Institution, 2022, 43(8): 48 − 53,86.
|
Thivillon L, Bertrand P, Laget B, et al. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components[J]. Journal of Nuclear Materials, 2009, 385(2): 236 − 241. doi: 10.1016/j.jnucmat.2008.11.023
|
Buchbinder D, Meiners W, Pirch N, et al. Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting[J]. Journal of Laser Applications, 2014, 26(1): 012004. doi: 10.2351/1.4828755
|
Kempen K, Vrancken B, Humbeeck J V, et al. Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating[J]. Journal of Manufacturing Science and Engineering, 2014, 136(6): 061026. doi: 10.1115/1.4028513
|
Liu Q C, Elambasseril J, Sun S J, et al. The effect of manufacturing defects on the fatigue behaviour of Ti-6Al-4V specimens fabricated using selective laser melting[J]. Advanced Materials Research, 2014, 891-892: 1519 − 1524. doi: 10.4028/www.scientific.net/AMR.891-892.1519
|
黄卫东, 林鑫. 激光立体成形高性能金属零件研究进展[J]. 中国材料进展, 2010, 29(6): 12 − 27.
Huang Weidong, Lin Xin. Research progress in laser solid forming of high performance metallic component[J]. Rare Metals Letters, 2010, 29(6): 12 − 27.
|
Shamsaei N, Yadollahi A, Bian L, et al. An overview of direct laser deposition for additive manufacturing; part Ⅱ: Mechanical behavior, process parameter optimization and control[J]. Additive Manufacturing, 2015, 8: 12 − 35. doi: 10.1016/j.addma.2015.07.002
|
彭谦, 董世运, 闫世兴, 等. 激光熔化沉积成形缺陷及其控制方法综述[J]. 材料导报, 2018, 32(15): 1 − 5. doi: 10.11896/j.issn.1005-023X.2018.15.019
Peng Qian, Dong Shiyun, Yan Shixing, et al. Review of laser melting deposition forming defects and their control methods[J]. Materials Reports, 2018, 32(15): 1 − 5. doi: 10.11896/j.issn.1005-023X.2018.15.019
|
岳琨, 练国富, 陈昌荣, 等. 激光熔覆粉末粒径对熔覆层成形控制的影响[J]. 精密成形工程, 2022, 14(3): 58 − 67.
Yue Kun, Lian Guofu, Chen Changrong, et al. Effect of particle size of laser cladding powder on forming control of cladding layer[J]. Journal of Netshape Forming Engineering, 2022, 14(3): 58 − 67.
|
张凤英, 陈静, 谭华, 等. 钛合金激光快速成形过程中缺陷形成机理研究[J]. 稀有金属材料与工程, 2007, 36(2): 211 − 215.
Zhang Fengying, Chen Jing, Tan Hua, et al. Study on defect formation mechanism in laser rapid forming of titanium alloy[J]. Rare Metal Materials and Engineering, 2007, 36(2): 211 − 215.
|
王维. TC4钛合金激光快速修复过程中熔合不良缺陷的评价研究[D]. 西安: 西北工业大学, 2007.
Wang Wei. Evaluation of poor fusion defects during laser rapid repair of TC4 titanium alloy[D]. Xi'an: Northwest University of Technology, 2007.
|
王志坚. 装备零件激光再制造成形零件几何特征及成形精度控制研究[D]. 广州: 华南理工大学, 2011.
Wang Zhijian. Research on geometric characteristics and forming accuracy control of laser remanufacturing parts for equipment parts [D]. Guangzhou: South China University of Technology, 2011.
|
Everton S, Dickens P, Tuck C, et al. The use of laser ultrasound to detect defects in laser melted parts[C]//TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings. Nottingham, UK, 2017: 105 − 116.
|
Majumdar J D, Pinkerton A, Liu Z, et al. Microstructure characterization and process optimization of laser assisted rapid fabrication of 316L stainless steel[J]. Applied Surface Science, 2005, 247(1-4): 320 − 327. doi: 10.1016/j.apsusc.2005.01.039
|
Chryssolouris G, Zannis S, Tsirbas K, et al. An experimental investigation of laser cladding[J]. CIRP Annals, 2002, 51(1): 145 − 148. doi: 10.1016/S0007-8506(07)61486-3
|
任仲贺, 武美萍, 唐又红, 等. 基于热力耦合的激光熔覆数值模拟与试验研究[J]. 激光与光电子学进展, 2019, 56(5): 176 − 185.
Ren Zhonghe, Wu Meiping, Tang Youhong, et al. Numerical simulation and experimental study of laser cladding based on thermomechanical coupling[J]. Laser & Optoelectronics Progress, 2019, 56(5): 176 − 185.
|
许伯强, 汪昊, 徐桂东, 等. 金属材料中激光产生熔池的数值模拟及应用[J]. 江苏大学学报(自然科学版), 2010, 31(3): 358 − 362.
Xu Boqiang, Wang Hao, Xu Guidong, et al. Numerical simulation and application of laser-generated molten pool in metal materials[J]. Journal of Jiangsu University (Natural Science Edition), 2010, 31(3): 358 − 362.
|
[1] | YUAN Mingxin, DAI Xianling, LIU Chao, SUN Hongwei, WANG Lei. Feature parameters extraction of ship welds based on spatial position and contour distance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 84-92. DOI: 10.12073/j.hjxb.20211208002 |
[2] | HE Jianping, TAO Xuyang, JI Yongfeng. Dynamic distribution characteristic of temperature field and weld morphology control in pulsed microplasma arc welding ultra-thin sheets[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 67-73. DOI: 10.12073/j.hjxb.20200423001 |
[3] | WANG Angyang, HE Jianping, WANG Xiaoxia, LINYANG Shenlan. Distribution characteristics and parameters effects of MPLW arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 77-81. DOI: 10.12073/j.hjxb.20151007002 |
[4] | JIANG Qixiang, ZOU Yirong, DU Dong. Spatial distribution measurement of gas tungsten arc current density based on image analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 101-104. |
[5] | CHEN Haiyong, DU Xiaolin, DONG Yan. Tiny visual feature extraction of random changing weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 97-101. |
[6] | SHI Duanhu, GANG Tie, YANG Feng. Automatic corresponding criterion of bulk defects in I style weldments[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 53-56. |
[7] | SHI Duanhu, GANG Tie, HUANG Chuanhui, YANG Genxi. Automated extraction of spatial locating data for bulk defects in double T joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 69-72. |
[8] | SHI Duan-hu, GANG Tie, YUAN Yuan. Spatial distribution features of weld defects in complex structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (11): 71-74. |
[9] | SHI Yu-xiang, QIAO Ya-xia, Masahiro TOYOSADA. Distribution feature of welding aerosol particle size[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 31-34. |
[10] | Han Guoming, Li Junyue, Wu Zhao, Liu Gang. Distribution Feature of Welding Arc Ultraviolet Spestrum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 213-218. |