Advanced Search
YANG Gaolin, ZHENG Quanhang, QIAN Haokai, FAN Wen, ZHANG Qunli, SHI Yuelin, YAO Jianhua. Influence mechanism and improvement strategy of aspect ratio on the poor fusion between laser cladding channels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 49-56. DOI: 10.12073/j.hjxb.20230307002
Citation: YANG Gaolin, ZHENG Quanhang, QIAN Haokai, FAN Wen, ZHANG Qunli, SHI Yuelin, YAO Jianhua. Influence mechanism and improvement strategy of aspect ratio on the poor fusion between laser cladding channels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 49-56. DOI: 10.12073/j.hjxb.20230307002

Influence mechanism and improvement strategy of aspect ratio on the poor fusion between laser cladding channels

More Information
  • Received Date: March 06, 2023
  • Available Online: October 09, 2023
  • Poor fusion is a common process defect in laser cladding. In order to explore the mechanism of poor fusion during inter-track overlap, single-track single-layer cladding test, multi-track single-layer cladding test, multi-track remelting test and single-layer tail-track remelting test were designed, and the simulation of temperature field during single-track cladding was carried out. The results show that the formation mechanism of the poor fusion defect is that the upper part on edge of the deposited area is raised, and the heat dissipation is slower and the melting is faster when the laser irradiates its surface. The laser energy input at the edge root is low and the shape is concave. so the heat dissipation is fast and the melting is slow. The molten liquid is turned out by the upper convex part and connected with the molten part of the root and the substrate, resulting in the gap between the root of the cladding layer and the laser, resulting in poor fusion defects. In order to reduce the occurrence of such poor fusion defects, a single-layer multi-pass lap test of the inclined cladding head was designed according to the mechanism of poor fusion. The results show that the inclined cladding head can effectively reduce the occurrence of poor fusion defects.
  • 谭文, 刘文今, 贾俊红. 激光熔覆Fe-C-Si-B的研究[J]. 金属热处理, 2000(1): 15 − 17. doi: 10.3969/j.issn.0254-6051.2000.01.005

    Tan Wen, Liu Wenjin, Jia Junhong. Research on laser cladding Fe-C-Si-B[J]. Heat Treatment of Metals, 2000(1): 15 − 17. doi: 10.3969/j.issn.0254-6051.2000.01.005
    惠洪帅, 刘长军. 激光熔覆设备的技术升级及应用[J]. 能源技术与管理, 2022, 47(5): 197 − 198.

    Hui Hongshuai, Liu Changjun. Technical upgrading and application of laser cladding equipment[J]. Energy Technology and Management, 2022, 47(5): 197 − 198.
    孙拂晓. 激光熔覆技术研究[J]. 激光杂志, 2010, 31(4): 49 − 50.

    Sun Fuxiao. Research on laser cladding technology[J]. Laser Journal, 2010, 31(4): 49 − 50.
    Wang Liwei, Chen Shujun, Xiao Jun, et al. Droplet-targeting laser hybrid indirect arc for additive manufacturing technology−A preliminary study[J]. China Welding, 2020, 29(1): 50 − 55.
    王洪潇, 王春生, 何广忠, 等. 不锈钢管自动非熔化极惰性气体钨极保护焊环焊工艺研究[J]. 城市轨道交通研究, 2019, 22(2): 26 − 29.

    Wang Hongxiao, Wang Chunsheng, He Guangzhong, et al. The investigation of the automatic non-molten inert gas tungsten shielded welding process for stainless steel pipe[J]. Urban Mass Transit, 2019, 22(2): 26 − 29.
    Li Xiaoping, Liu Xiao, Li Runzhou, et al. Microstructure and property research on welded joints of 7xxx aluminum alloy welding wire TIG for 7075 aluminum alloy[J]. China Welding, 2021, 30(4): 58 − 64.
    Imamfauzie R, Che Jamil M S, Samad Z, et al. Microstructure analysis and mechanical characteristics of tungsten inert gas and metal inert gas welded AA6082-T6 tubular joint: A comparative study[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 17 − 24. doi: 10.1016/S1003-6326(17)60003-7
    Han Yongquan, Han Jiao, Chen Yan, et al. Stability of fiber laser-MIG hybrid welding of high strength aluminum alloy[J]. China Welding, 2021, 30(3): 7 − 11.
    徐重. 等离子表面冶金技术的现状与发展[J]. 中国工程科学, 2002, 4(2): 36 − 41.

    Xu Chong. Present situation and development of plasma surface metallurgy technology[J]. Strategic Study of Chinese Academy of Engineering, 2002, 4(2): 36 − 41.
    周润猛, 张立新, 胡雪, 等. 等离子堆焊硬质堆焊层性能研究现状与分析[J]. 新疆农机化, 2022(2): 31 − 34.

    Zhou Runmeng, Zhang Lixin, Hu Xue, et al. Research status and analysis of plasma surfacing hard surfacing layer performance[J]. Xinjiang Agricultural Mechanization, 2022(2): 31 − 34.
    朱明冬, 吴冰洁, 曹立彦, 等. 304LN不锈钢表面激光熔覆钴基合金组织和性能[J]. 焊接学报, 2022, 43(8): 48 − 53,86.

    Zhu Mingdong, Wu Bingjie, Cao Liyan, et al. Microstructure and properties of laser cladding cobalt-based alloy on 304 LN stainless steel surface[J]. Transactions of the China Welding Institution, 2022, 43(8): 48 − 53,86.
    Thivillon L, Bertrand P, Laget B, et al. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components[J]. Journal of Nuclear Materials, 2009, 385(2): 236 − 241. doi: 10.1016/j.jnucmat.2008.11.023
    Buchbinder D, Meiners W, Pirch N, et al. Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting[J]. Journal of Laser Applications, 2014, 26(1): 012004. doi: 10.2351/1.4828755
    Kempen K, Vrancken B, Humbeeck J V, et al. Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating[J]. Journal of Manufacturing Science and Engineering, 2014, 136(6): 061026. doi: 10.1115/1.4028513
    Liu Q C, Elambasseril J, Sun S J, et al. The effect of manufacturing defects on the fatigue behaviour of Ti-6Al-4V specimens fabricated using selective laser melting[J]. Advanced Materials Research, 2014, 891-892: 1519 − 1524. doi: 10.4028/www.scientific.net/AMR.891-892.1519
    黄卫东, 林鑫. 激光立体成形高性能金属零件研究进展[J]. 中国材料进展, 2010, 29(6): 12 − 27.

    Huang Weidong, Lin Xin. Research progress in laser solid forming of high performance metallic component[J]. Rare Metals Letters, 2010, 29(6): 12 − 27.
    Shamsaei N, Yadollahi A, Bian L, et al. An overview of direct laser deposition for additive manufacturing; part Ⅱ: Mechanical behavior, process parameter optimization and control[J]. Additive Manufacturing, 2015, 8: 12 − 35. doi: 10.1016/j.addma.2015.07.002
    彭谦, 董世运, 闫世兴, 等. 激光熔化沉积成形缺陷及其控制方法综述[J]. 材料导报, 2018, 32(15): 1 − 5. doi: 10.11896/j.issn.1005-023X.2018.15.019

    Peng Qian, Dong Shiyun, Yan Shixing, et al. Review of laser melting deposition forming defects and their control methods[J]. Materials Reports, 2018, 32(15): 1 − 5. doi: 10.11896/j.issn.1005-023X.2018.15.019
    岳琨, 练国富, 陈昌荣, 等. 激光熔覆粉末粒径对熔覆层成形控制的影响[J]. 精密成形工程, 2022, 14(3): 58 − 67.

    Yue Kun, Lian Guofu, Chen Changrong, et al. Effect of particle size of laser cladding powder on forming control of cladding layer[J]. Journal of Netshape Forming Engineering, 2022, 14(3): 58 − 67.
    张凤英, 陈静, 谭华, 等. 钛合金激光快速成形过程中缺陷形成机理研究[J]. 稀有金属材料与工程, 2007, 36(2): 211 − 215.

    Zhang Fengying, Chen Jing, Tan Hua, et al. Study on defect formation mechanism in laser rapid forming of titanium alloy[J]. Rare Metal Materials and Engineering, 2007, 36(2): 211 − 215.
    王维. TC4钛合金激光快速修复过程中熔合不良缺陷的评价研究[D]. 西安: 西北工业大学, 2007.

    Wang Wei. Evaluation of poor fusion defects during laser rapid repair of TC4 titanium alloy[D]. Xi'an: Northwest University of Technology, 2007.
    王志坚. 装备零件激光再制造成形零件几何特征及成形精度控制研究[D]. 广州: 华南理工大学, 2011.

    Wang Zhijian. Research on geometric characteristics and forming accuracy control of laser remanufacturing parts for equipment parts [D]. Guangzhou: South China University of Technology, 2011.
    Everton S, Dickens P, Tuck C, et al. The use of laser ultrasound to detect defects in laser melted parts[C]//TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings. Nottingham, UK, 2017: 105 − 116.
    Majumdar J D, Pinkerton A, Liu Z, et al. Microstructure characterization and process optimization of laser assisted rapid fabrication of 316L stainless steel[J]. Applied Surface Science, 2005, 247(1-4): 320 − 327. doi: 10.1016/j.apsusc.2005.01.039
    Chryssolouris G, Zannis S, Tsirbas K, et al. An experimental investigation of laser cladding[J]. CIRP Annals, 2002, 51(1): 145 − 148. doi: 10.1016/S0007-8506(07)61486-3
    任仲贺, 武美萍, 唐又红, 等. 基于热力耦合的激光熔覆数值模拟与试验研究[J]. 激光与光电子学进展, 2019, 56(5): 176 − 185.

    Ren Zhonghe, Wu Meiping, Tang Youhong, et al. Numerical simulation and experimental study of laser cladding based on thermomechanical coupling[J]. Laser & Optoelectronics Progress, 2019, 56(5): 176 − 185.
    许伯强, 汪昊, 徐桂东, 等. 金属材料中激光产生熔池的数值模拟及应用[J]. 江苏大学学报(自然科学版), 2010, 31(3): 358 − 362.

    Xu Boqiang, Wang Hao, Xu Guidong, et al. Numerical simulation and application of laser-generated molten pool in metal materials[J]. Journal of Jiangsu University (Natural Science Edition), 2010, 31(3): 358 − 362.
  • Related Articles

    [1]YUAN Mingxin, DAI Xianling, LIU Chao, SUN Hongwei, WANG Lei. Feature parameters extraction of ship welds based on spatial position and contour distance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 84-92. DOI: 10.12073/j.hjxb.20211208002
    [2]HE Jianping, TAO Xuyang, JI Yongfeng. Dynamic distribution characteristic of temperature field and weld morphology control in pulsed microplasma arc welding ultra-thin sheets[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 67-73. DOI: 10.12073/j.hjxb.20200423001
    [3]WANG Angyang, HE Jianping, WANG Xiaoxia, LINYANG Shenlan. Distribution characteristics and parameters effects of MPLW arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 77-81. DOI: 10.12073/j.hjxb.20151007002
    [4]JIANG Qixiang, ZOU Yirong, DU Dong. Spatial distribution measurement of gas tungsten arc current density based on image analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 101-104.
    [5]CHEN Haiyong, DU Xiaolin, DONG Yan. Tiny visual feature extraction of random changing weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 97-101.
    [6]SHI Duanhu, GANG Tie, YANG Feng. Automatic corresponding criterion of bulk defects in I style weldments[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 53-56.
    [7]SHI Duanhu, GANG Tie, HUANG Chuanhui, YANG Genxi. Automated extraction of spatial locating data for bulk defects in double T joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 69-72.
    [8]SHI Duan-hu, GANG Tie, YUAN Yuan. Spatial distribution features of weld defects in complex structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (11): 71-74.
    [9]SHI Yu-xiang, QIAO Ya-xia, Masahiro TOYOSADA. Distribution feature of welding aerosol particle size[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 31-34.
    [10]Han Guoming, Li Junyue, Wu Zhao, Liu Gang. Distribution Feature of Welding Arc Ultraviolet Spestrum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 213-218.
  • Cited by

    Periodical cited type(12)

    1. 汪孟杰,安康,祝贺,陈瑶,王李冬. 基于机器视觉技术的工业焊板焊缝位置检测系统. 物联网技术. 2025(01): 9-14+20 .
    2. 赵秋,唐琨,李英豪,林铮哲,陈鹏. 钢桥面板对接焊缝表面多缺陷疲劳效应研究. 铁道标准设计. 2024(03): 133-140+162 .
    3. 强伟,王克鸿,彭勇,袁银辉,路永新,董会. V形耦合双热源自熔焊接热-力分布特征. 稀有金属. 2024(04): 529-538 .
    4. 薛辰宇,石端虎,甄紫,孙远. 对接接头焊件射线检测图像焊缝区的自适应提取. 焊接技术. 2024(08): 106-110 .
    5. 陈晓明,王丽,马良,周峰,袁山山. 钢筋工程焊缝质量检测技术研究进展. 北京理工大学学报. 2024(12): 1215-1224 .
    6. 石端虎,吴三孩,历长云,赵洪枫,刚铁,何敏. 对接接头焊件缺陷空间定位及分布特征研究. 徐州工程学院学报(自然科学版). 2023(02): 55-62 .
    7. 董慧. 基于二元函数拟合的X射线焊缝图像缺陷分割方法. 焊接技术. 2023(07): 18-22 .
    8. 孙远,石端虎. T形接头角焊缝气孔缺陷空间位置数据的自动提取. 盐城工学院学报(自然科学版). 2023(02): 25-31 .
    9. 洪祥,张海越,宋骐. 基于图像识别的AH36钢激光焊缝节点定位技术研究. 计算机测量与控制. 2023(11): 299-305+314 .
    10. 蔡文龙,赵振,李文忠. 基于机器视觉的航空插头焊杯定位. 计算机仿真. 2022(06): 53-56 .
    11. 强伟,路永新,袁银辉,孙粲. T形接头冷丝填充双热源协同焊接数值模拟. 材料科学与工艺. 2021(05): 57-62 .
    12. 石端虎,吴三孩,历长云,沙静,孙远,杨峰. 对接接头焊件批量缺陷空间位置的可视化. 焊接. 2021(12): 48-52+66 .

    Other cited types(3)

Catalog

    Article views (195) PDF downloads (60) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return