Advanced Search
SHAO Wendong, ZHAO Shangchao, LI Qiang, PEI Xianjun, MA Qiaoyan, LI Xiangwei. Engineering application of structural strain method of low cycle fatigue in railway freight carbody[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 113-120. DOI: 10.12073/j.hjxb.20230221001
Citation: SHAO Wendong, ZHAO Shangchao, LI Qiang, PEI Xianjun, MA Qiaoyan, LI Xiangwei. Engineering application of structural strain method of low cycle fatigue in railway freight carbody[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 113-120. DOI: 10.12073/j.hjxb.20230221001

Engineering application of structural strain method of low cycle fatigue in railway freight carbody

More Information
  • Received Date: February 20, 2023
  • Available Online: January 23, 2024
  • In order to solve the problem of low cycle fatigue life prediction of welded structure of railway freight car body, firstly, the structural strain calculation theory of low cycle fatigue under different yield states is derived, and the program is designed based on the calculation theory. and the theoretical verification is completed through the welded joint test. Secondly, in order to further illustrate the applicability of structural strain method calculation theory of low cycle fatigue, the plane strain finite element model and structural strain theory are compared; finally, the engineering application of low cycle fatigue life analysis of express freight car is carried out by combining virtual bench with structural stress strain. The results show that the structural strain method and program based on low cycle fatigue can solve the problem of low cycle fatigue of railway freight cars when the stress of welded structure is higher than the yield strength 150 MPa, and the result of plane strain model is consistent with that of structural strain theory, but after exceeding the yield strength 150 MPa, the error increases with the increase of structural stress. The research in this paper provides a good technical support for the popularization and application of structural strain method in low cycle fatigue.

  • [1]
    周韶泽, 郭硕, 陈秉智, 等. 焊接结构超高周疲劳主S-N曲线拟合及寿命预测方法[J]. 焊接学报, 2022, 43(5): 76 − 82. doi: 10.12073/j.hjxb.20211116002

    Zhou Shaoze, Guo Shuo, Chen Bingzhi, et al. Master S-N curve fitting and life prediction method for very high cycle fatigue of welded structures[J]. Transactions of the China Welding Institution, 2022, 43(5): 76 − 82. doi: 10.12073/j.hjxb.20211116002
    [2]
    谢素明, 周晓坤, 李向伟, 等. 基于美国ASME标准的重载货车车体焊缝疲劳寿命预测[J]. 计算力学学报, 2012, 29(1): 129 − 134.

    Xie Suming, Zhou Xiaokun, Li Xiangwei, et al. Fatigue life prediction for weld line in heavy freight carbody based on ASME standard[J]. Chinese Journal of Computational Mechanics, 2012, 29(1): 129 − 134.
    [3]
    Gan S M, Liu H Y, Zhai Z P, et al. A review of welding residual stress test methods[J]. China Welding, 2022, 31(2): 45 − 55.
    [4]
    李向伟, 方吉, 赵尚超. 焊接结构主S-N曲线拟合方法及软件开发[J]. 焊接学报, 2020, 41(1): 80 − 85.

    Li Xiangwei, Fang Ji, Zhao Shangchao. Master S-N curve fitting method of welded structure and software development[J]. Transactions of the China Welding Institution, 2020, 41(1): 80 − 85.
    [5]
    王苹, 裴宪军, 钱宏亮, 等. 焊接结构抗疲劳设计新方法与应用[J]. 机械工程学报, 2021, 57(16): 349 − 360. doi: 10.3901/JME.2021.16.349

    Wang Ping, Pei Xianjun, Qian Hongliang, et al. Unique fatigue design method of welded structures and application[J]. Journal of Mechanical Engineering, 2021, 57(16): 349 − 360. doi: 10.3901/JME.2021.16.349
    [6]
    杨广雪, 刘志明, 李广全, 等. 基于等效结构应力法的焊接构架疲劳损伤评估[J]. 铁道学报, 2020, 42(7): 73 − 79.

    Yang Guangxue, Liu Zhiming, Li Guangquan, et al. Fatigue damage assessment of welded frame on equivalent structural stress method[J]. Journal of the China railway Society, 2020, 42(7): 73 − 79.
    [7]
    李向伟, 方吉, 李文全, 等. 重载货车车体疲劳台架试验技术研究[J]. 铁道学报, 2021, 43(4): 33 − 41.

    Li Xiangwei, Fang Ji, Li Wenquan, et al. Research on fatigue bench test technology for heavy haul vehicle body[J]. Journal of the China Railway Society, 2021, 43(4): 33 − 41.
    [8]
    王欣, 岳增可, 蔡福海, 等. 基于结构应力法的起重机焊缝多轴疲劳寿命研究[J]. 机械强度, 2022, 44(5): 1226 − 1231.

    Wang Xin, Yue Zengke, Cai Fuhai, et al. Research on multi-axial fatigue life of crane weld based on structural stress method[J]. Journal of Mechanical Strength, 2022, 44(5): 1226 − 1231.
    [9]
    曹蕾蕾, 王留涛, 王严, 等. 基于等效结构应力法的挖掘 机工作装置疲劳寿命评估[J]. 华南理工大学学报, 2022, 50(8): 62 − 70.

    Cao Leilei, Wang Liutao, Wang Yan, et al. Fatigue life evaluation of excavator working device based on equivalent structural stress method[J]. Journal of South China University of Technology, 2022, 50(8): 62 − 70.
    [10]
    高一迪, 董平沙, 余杨, 等. 结构应变法在焊件低周疲劳中的应用研究[J]. 中国造船, 2019, 60(3): 92 − 104.

    Gao Yidi, Dong Pingsha, Yu Yang, et al. Investigation of structural strain method in low-cycle fatigue for weldments[J]. Shipbuilding of China, 2019, 60(3): 92 − 104.
    [11]
    Pei X J, Li X W, Zhao S C, et al. Low cycle fatigue evaluation of welded structures with arbitrary stress-strain curve considering stress triaxiality effect[J]. International Journal of Fatigue, 162(3): 106969.
    [12]
    于跃斌, 赵尚超, 李向伟, 等. 铁路货车车体线路动态响应仿真与验证[J]. 西南交通大学学报, 2019, 54(3): 626 − 632.

    Yu Yuebin, Zhao Shangchao, Li Xiangwei, et al. Simulation and verification of dynamic response of railway wagon on railway track[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 626 − 632.
    [13]
    赵尚超, 王东坡, 李向伟, 等. 焊接结构模态结构应力法程序开发及工程应用[J]. 焊接学报, 2023, 44(3): 1 − 7. doi: 10.12073/j.hjxb.20220414001

    Zhao Shangchao, Wang Dongpo, Li Xiangwei, et al. Development and engineering application of modal structural stress method for welded structures[J]. Transactions of the China Welding Institution, 2023, 44(3): 1 − 7. doi: 10.12073/j.hjxb.20220414001
    [14]
    赵尚超. 基于主S-N曲线法的铁路货车车体虚拟台架试验[J]. 华东交通大学学报, 2022, 39(3): 110 − 117. doi: 10.3969/j.issn.1005-0523.2022.3.hdjtdxxb202203013

    Zhao Shangchao. Virtual test of railway freight car body based on main S-N curve method[J]. Journal of East China Jiaotong University, 2022, 39(3): 110 − 117. doi: 10.3969/j.issn.1005-0523.2022.3.hdjtdxxb202203013
  • Related Articles

    [1]XU Zhenzhen, ZHANG Jianxun. Low-cycle fatigue properties of welded microzones based on the local strain approach[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 10-15, 31. DOI: 10.12073/j.hjxb.20220309001
    [2]YANG Shangqing, XU Lianyong, ZHAO Lei, HAN Yongdian, JING Hongyang. Study on high temperature low cycle fatigue behavior of a novel austenitic heat-resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 14-18. DOI: 10.12073/j.hjxb.20190718003
    [3]HAN Yongdian, ZHANG Zhaofu, XU Lianyong, ZHAO Lei, JING Hongyang. Study on high temperature low cycle fatigue behavior of P92 steel weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 11-14. DOI: 10.12073/j.hjxb.2019400063
    [4]WANG Xiaoguang, YU Huiping, LI Xiaoyang, CHEN Shujun. Fatigue test analysis of ultra-high strength steel spot welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 99-102,110.
    [5]WANG Chao, LI Xiaoyan, ZHU Yongxin. Influence of dwell time and loading rate on low cycle fatigue behavior of lead-free solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 71-75.
    [6]LU Ning. Virtual weld experiment system of billet flash butt welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 83-87.
    [7]ZHAO Wenzhong, WEI Hongliang, FANG Ji, LI Jitao. The theory and application of the virtual fatigue test of welded structures based on the master S-N curve method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 75-78.
    [8]YAN Keng, ZHANG Pei-lei, JIANG Cheng-yu. Low cycle fatigue property of TA5 titanium alloy welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 84-86.
    [9]KONG Liang, WU Yi-xiong, LU Hao, JIN Xin. Integrated simulation method on virtual welding manufacturing sys-tem[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (1): 69-73,77.
    [10]YANG Yun-qiang, SONG Yong-lun, YIN Shu-yan, ZHANG Jun, YANG Qing-xuan, ZHI Nan. New research on welding machine test device based on virtual instrument technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 103-106.
  • Cited by

    Periodical cited type(6)

    1. 苏景新,卞文熙,路鹏程. 热塑性复合材料连接技术综述. 塑料工业. 2022(07): 17-25+36 .
    2. 宿欢欢,吴志生,贾托胜,邹琪. 碳纤维复合材料/铝合金焊接方法现状与发展. 焊接技术. 2021(S1): 1-8 .
    3. 杨苑铎,李洋,李一昂,王柏村,敖三三,罗震. 碳纤维增强热塑性复合材料超声波焊接研究进展. 机械工程学报. 2021(22): 130-156 .
    4. 宋宗贤,庄国彬,李嘉彬,魏鹏,韩明盼. 长玻纤PP复合材料的超声波焊接工艺研究. 现代塑料加工应用. 2020(03): 49-51 .
    5. 杨庭飞,朱永伟,赵青青. 塑料组合构件高效超声波焊接的仿真与实验. 工程塑料应用. 2019(02): 52-58 .
    6. 刘明瑞,严飙,彭福军,彭雄奇,尹红灵. 碳纤维/聚醚醚酮(PEEK)复合材料拉拔制管工艺设计和模拟. 材料科学与工艺. 2019(05): 1-6 .

    Other cited types(11)

Catalog

    Article views (109) PDF downloads (14) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return