Advanced Search
FANG Chen, LIU Shengdan, YI Tie, JIANG Keda. Experimental and numerical simulation of the effect of resistance-assisted heating on formability of 2519A aluminum alloy during friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 59-66. DOI: 10.12073/j.hjxb.20230105001
Citation: FANG Chen, LIU Shengdan, YI Tie, JIANG Keda. Experimental and numerical simulation of the effect of resistance-assisted heating on formability of 2519A aluminum alloy during friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 59-66. DOI: 10.12073/j.hjxb.20230105001

Experimental and numerical simulation of the effect of resistance-assisted heating on formability of 2519A aluminum alloy during friction stir welding

More Information
  • Received Date: January 04, 2023
  • Available Online: August 29, 2023
  • In present study, the effects of the resistance-assisted heating process on the formability of 2519-T87 friction stir welded joints were investigated by experiments and numerical simulations. Based on the coupled Eulerian-Lagrangian (CEL) method, a three-dimensional thermal mechanical coupling model of friction stir welding with a resistance-assisted heating process was established. The temperature field and material flow behavior were analyzed, and the mechanism of eliminating tunnel hole defects during resistance-assisted heating friction stir welding process was discussed. The results show that the auxiliary heating process increases the welding peak temperature from 483 ℃ to 549 ℃, increases the residence time at high temperature above 350 ℃, and expands the high-temperature distribution area. This reduces the material deformation resistance, and enhances the fluidity of materials from the retreating side of the nugget zone to the advancing side, leading to more sufficient backfilling of materials, thus eliminating the tunnel hole defects in the joint.

  • [1]
    Thomas W M, Nicholas E D, Needham J C. Friction stir welding: Great Britain. 9125978.8[P]. 1991-12-06.
    [2]
    Dialami N, Cervera M, Chiumenti M. Defect formation and material flow in friction stir welding[J]. European Journal of Mechanics-A/Solids, 2020, 80: 103912. doi: 10.1016/j.euromechsol.2019.103912
    [3]
    文旭峰, 苗臣怀, 曹丽杰, 等. 5052铝合金搅拌摩擦焊的材料流动数值模拟[J]. 热加工工艺, 2022, 51(5): 105 − 109.

    Wen Xufeng, Miao Chenhuai, Cao Lijie, et al. Numerical simulation on material flow during friction stir welding of 5052 Al alloy[J]. Hot Working Technology, 2022, 51(5): 105 − 109.
    [4]
    龙玲, 史清宇, 刘铁, 等. 搅拌摩擦焊接材料流动模型及在缺陷预测中的应用[J]. 焊接学报, 2019, 40(1): 84 − 88. doi: 10.12073/j.hjxb.2019400017

    Long Ling, Shi Qingyu, Liu Tie, et al. Modeling of material flow during friction stir welding and the application for defect prediction[J]. Transactions of the China Welding Institution, 2019, 40(1): 84 − 88. doi: 10.12073/j.hjxb.2019400017
    [5]
    陈高强, 史清宇. 搅拌摩擦焊中材料流动行为数值模拟的研究进展[J]. 机械工程学报, 2015, 51(22): 11 − 21. doi: 10.3901/JME.2015.22.011

    Chen Gaoqiang, Shi Qingyu. Recent advances in numerical simulation of material flow behavior during frictions stir welding[J]. Journal of Mechanical Engineering, 2015, 51(22): 11 − 21. doi: 10.3901/JME.2015.22.011
    [6]
    Kim YG, Fujii H, Tsumura T. Three defect types in friction stir welding of aluminum die casting alloy[J]. Materials Science & Engineering A, 2006, 415(1-2): 250 − 254.
    [7]
    De P S, Mishra R S. Friction stir welding of precipitation strengthened aluminium alloys: scopes and challenges[J]. Science & Technology of Welding & Joining, 2013, 16(4): 343 − 347.
    [8]
    Padhy G K, Wu C S, Gao S. Auxiliary energy assisted friction stir welding – Status review[J]. Science and Technology of Welding & Joining, 2015, 20(8): 631 − 649.
    [9]
    宋新华, 修腾飞, 金湘中, 等. 激光辅助加热搅拌摩擦焊3维流场数值模拟[J]. 激光技术, 2016, 40(3): 353 − 357. doi: 10.7510/jgjs.issn.1001-3806.2016.03.011

    Song Xinhua, Xiu Tengfei, Jin Xiangzhong, et al. Numerical simulation of 3D flow field on laser-assisted heating friction stir welding of steel[J]. Laser Technology, 2016, 40(3): 353 − 357. doi: 10.7510/jgjs.issn.1001-3806.2016.03.011
    [10]
    Yi T, Liu S D, Fang C, et al. Eliminating hole defects and improving microstructure and mechanical properties of friction stir welded joint of 2519 aluminum alloy via TIG arc[J]. Journal of Materials Processing Technology, 2022, 310: 117773. doi: 10.1016/j.jmatprotec.2022.117773
    [11]
    朱智, 王敏, 张会杰, 等. 基于CEL方法搅拌摩擦焊材料流动及缺陷的模拟[J]. 中国有色金属学报, 2018, 28(2): 294 − 299. doi: 10.19476/j.ysxb.1004.0609.2018.02.10

    Zhu Zhi, Wang Min, Zhang Huijie, et al. Simulation on material flow and defect during friction stir welding based on CEL method[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(2): 294 − 299. doi: 10.19476/j.ysxb.1004.0609.2018.02.10
    [12]
    Tang J, Shen Y. Effects of preheating treatment on temperature distribution and material flow of aluminum alloy and steel friction stir welds[J]. The Society of Manufacturing Engineers, 2017, 29: 29 − 40.
    [13]
    Yaduwanshi D K, Bag S, Pal S. Numerical modeling and experimental investigation on plasma-assisted hybrid friction stir welding of dissimilar materials[J]. Materials & Design, 2016, 92: 166 − 183.
    [14]
    He X C, Gu F S, Ball A. A review of numerical analysis of friction stir welding[J]. Progress in Materials Science, 2014, 65: 1 − 66. doi: 10.1016/j.pmatsci.2014.03.003
    [15]
    Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(10): 31 − 48.
    [16]
    Liu W H, He Z T, Chen Y Q. Dynamic mechanical properties and constitutive equations of 2519A aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 2179 − 2186. doi: 10.1016/S1003-6326(14)63330-6
    [17]
    郭怀志, 潘家敬, 赵朋成, 等. 2219铝合金搅拌摩擦焊接过程数值分析[J]. 青岛科技大学学报(自然科学版), 2021, 42(3): 94 − 100. doi: 10.16351/j.1672-6987.2021.03.015

    Guo Huaizhi, Pan Jiajing, Zhao Pengcheng, et al. Numerical analysis of friction stir welding of 2219 Aluminum alloy[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2021, 42(3): 94 − 100. doi: 10.16351/j.1672-6987.2021.03.015
    [18]
    徐韦锋, 刘金合, 朱宏强. 2219铝合金厚板搅拌摩擦焊接温度场数值模拟[J]. 焊接学报, 2010, 31(2): 63 − 66.

    Xu Weifeng, Liu Jinhe, Zhu Hongqiang. Numerical simulation of thermal field of friction stir welded 2219 aluminum alloy thick plate[J]. Transactions of the China Welding Institution, 2010, 31(2): 63 − 66.
    [19]
    Schmidt H, Hattel J, Wert J. An analytical model for the heat generation in friction stir welding[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12: 143 − 157. doi: 10.1088/0965-0393/12/1/013
    [20]
    Fuller C B. Friction stir tooling: Tool materials and designs[J]. Friction Stir Welding and Processing, 2007.
    [21]
    Nicholson D W. Finite element analysis: thermomechanics of solids, second edition[J]. CRC Press, 2008.
    [22]
    Constantin M A, Niţu E L, Diakhate M, et al. An efficient strategy for 3D numerical simulation of friction stir welding process of pure copper plates[J]. IOP Conference Series:Materials Science and Engineering, 2020, 916(1): 012021. doi: 10.1088/1757-899X/916/1/012021
    [23]
    李文亚, 余敏, 李京龙. 质量放大因子对搅拌摩擦焊接插入过程的影响[J]. 焊接学报, 2010, 31(2): 1 − 4.

    Li Wenya, Yu Min, Li Jinglong. Effect of mass scaling factor on the plunge stage of friction stir welding[J]. Transactions of the China Welding Institution, 2010, 31(2): 1 − 4.
    [24]
    朱涵文. 底部辅热搅拌摩擦焊工艺及其温度场数值模拟研究[D]. 镇江, 江苏科技大学, 2021.

    Zhu Hanwen. Process and numerical simulation of temperature field of friction stir welding with auxiliary heating[D]. Zhenjiang, Jiangsu University of Science and Technology, 2021.
    [25]
    李慧中, 梁霄鹏, 张新明, 等. 2519铝合金热变形组织演化[J]. 中国有色金属学报, 2008, 18(2): 226 − 230. doi: 10.3321/j.issn:1004-0609.2008.02.006

    Li Huizhong, Liang Xiaopeng Zhang Xinming, et al. Microstructure evolution of 2519 aluminum alloy during hot deformation[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(2): 226 − 230. doi: 10.3321/j.issn:1004-0609.2008.02.006
    [26]
    Alam M P, Sinha A N. Fabrication of third generation Al–Li alloy by friction stir welding: a review[J]. Sādhanā, 2019, 44(6): 1 − 13.
  • Related Articles

    [1]LI Jun, ZHANG Wenfeng, ZHENG Yansong, LOU Haoyue. Numerical simulation of longitudinal plastic strain field in thin-plate weldment of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 4-8.
    [2]ZHANG Xueqiu, YANG Jianguo, LIU Xuesong, FANG Hongyuan, QU Shen. Numerical simulation of welding distortion of blisk on aero-engine by controlling heat input[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 37-40.
    [3]WANG Jianmin, ZHU Xi, LIU Runquan. Three dimensional numerical simulation for explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (5): 109-112.
    [4]ZHAO Yan-hua, LIN San-bao, HE Zi-qiu, WU Lin. Numerical simulation of 3D friction stir welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 75-78.
    [5]MENG Qing-guo, FANG Hong-yuan, XU Wen-li, JI Shu-de. Numerical simulation of stress field for twin wire welding of al-alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (8): 43-48.
    [6]WU Zhi-sheng, YANG Xin-hua, SHAN Ping, HU Sheng-sun, LIAN Jin-rui. Numerical simulation of electrode tip temperature for spot welding aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 15-18,26.
    [7]WU Yan-gao, LI Wu-shen, ZOU Hong-jun, FENG Ling-zhi. State-of-the-art of Numerical Simulation In Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 89-92.
    [8]ZHANG Jiu-hai, HE Peng. Numeric Simulation for Diffusion Bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 84-91.
    [9]ZHANG Xian-hui, TAN Chang-ying, CHEN Pei-yin. Numerical Simulation of Hydrogen Diffusion in Welded Joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 51-54.
    [10]Wang Jianhua, Zhong Xiaomin, Qi Xinhai. 3-D numerical simulation of deformations in pipe-plate joint with holes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (3): 140-145.
  • Cited by

    Periodical cited type(2)

    1. 曹润平,韩永全,刘晓虎,洪海涛,韩蛟. 稀土铈对电弧及熔滴过渡行为的影响. 焊接学报. 2025(01): 95-102 . 本站查看
    2. 刘景武,张蕾,杜义,孙磊,王杏华,张晓,董星. 785 MPa及以上高强钢焊接材料的研发现状与展望. 精密成形工程. 2025(02): 62-75 .

    Other cited types(0)

Catalog

    Article views (114) PDF downloads (31) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return