Advanced Search
HAN Jiao, HAN Yongquan, HONG Haitao, SUN Zhenbang. Analysis of VPPA-MIG Hybrid Arc Coupling Mechanism Based on Spectral Diagnosis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 104-109. DOI: 10.12073/j.hjxb.20221211001
Citation: HAN Jiao, HAN Yongquan, HONG Haitao, SUN Zhenbang. Analysis of VPPA-MIG Hybrid Arc Coupling Mechanism Based on Spectral Diagnosis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 104-109. DOI: 10.12073/j.hjxb.20221211001

Analysis of VPPA-MIG Hybrid Arc Coupling Mechanism Based on Spectral Diagnosis

More Information
  • Received Date: December 10, 2022
  • Available Online: August 18, 2023
  • In the VPPA ( variable polarity plasma arc ) -MIG hybrid welding of aluminum alloy, when the welding current of VPPA is 130 A and the MIG welding current is 200 A, the MIG arc plasma is biased towards and connected with the VPPA plasma in the positive ( tungsten electrode is negative ) stage during the current base period, and does not connect with the VPPA plasma in the reverse polarity stage ( tungsten electrode is positive ), and the MIG arc voltage in the base stage is lower when the VPPA is positive. In order to clarify the above behavior mechanism, the hybrid arc was diagnosed by spectroscopy. Based on the Boltzmann diagram method and Stark broadening method, the average temperature and electron density of the VPPA-MIG hybrid arc at 2.5 mm above the test plate, the VPPA region, the coupling region, and the center of the MIG region are calculated. It is proved that the average state of the plasma at the above position is in a local thermodynamic equilibrium state. Based on the relationship between the emission coefficient and the plasma temperature, it is found that the high-temperature area of VPPA during the negative polarity period is larger than that during the positive polarity period by using Ar 794.8 nm narrow-band filtering combined with a high-speed camera. Moreover, the Al 396.1 nm spectral line in VPPA has higher radiation intensity and wider range during the reverse polarity period. It is proved that the decrease of MIG arc voltage in the base stage of hybrid welding mainly comes from cathode voltage drop rather than arc column voltage drop.

  • [1]
    Ericsson M, R Sandström. Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG[J]. International Journal of Fatigue, 2003, 25(12): 1379 − 1387. doi: 10.1016/S0142-1123(03)00059-8
    [2]
    Yan Z Y, Chen S J, Jiang F, et al. Effect of asymmetric material flow on the microstructure and mechanical properties of 5A06 Al-alloy welded joint by VPPA welding[J]. Metals - Open Access Metallurgy Journal, 2021, 11(1): 120.
    [3]
    杜茂华, 韩永全, 樊伟杰, 等. 高强铝合金双脉冲VPPA焊缝成形机理[J]. 焊接学报, 2020, 41(2): 43 − 47 + 99. doi: 10.12073/j.hjxb.20190810002

    Du Maohua, Han Yongquan, Fan Weijie, et al. Mechanism of weld formation using double pulsed variable polarity plasma arc welding of high strength aluminum alloy[J]. Transactions of the China Welding Institution, 2020, 41(2): 43 − 47 + 99. doi: 10.12073/j.hjxb.20190810002
    [4]
    韩永全, 郭龙, 陈树君, 等. 变极性等离子弧穿孔熔池受力及焊缝成形稳定性[J]. 材料工程, 2011(12): 83-86.

    Han Yongquan, Guo Long, Chen Shujun, et al. Weld formation stability and force in variable polarity plasma arc keyhole welding[J]. Journal of Materials Engineering, 2011(12): 83-86.
    [5]
    Sun Z B, Han Y Q, Du M H, et al. Thermal process calculation and analysis in VPPA-MIG Hybrid welding of thick high-strength aluminum alloy plates[J]. Rare Metal Materials and Engineering, 2020, 49(8): 2674 − 2682.
    [6]
    Sun Z B Han Y Q, Du M H, et al. Numerical simulation of VPPA-GMAW hybrid welding of thick aluminum alloy plates considering variable heat input and droplet kinetic energy[J]. Journal of Manufacturing Processes, 2018, 34(8): 688 − 696.
    [7]
    Han Y Q, Tong J H, Hong H T, et al. The influence of hybrid arc coupling mechanism on GMAW arc in VPPA-GMAW hybrid welding of aluminum alloys[J]. International Journal of Advanced Manufacturing Technology, 2019, 101: 989 − 994. doi: 10.1007/s00170-018-3007-5
    [8]
    Liu L M, Huang RS, Song G, et al. Behavior and spectrum analysis of welding arc in low-power YAG-Laser–MAG hybrid-welding process[J]. IEEE Transactions on Plasma Science, 2008, 36(4): 1937 − 1943. doi: 10.1109/TPS.2008.927138
    [9]
    Han Y Q, Han J, Chen Y, et al. Stability of fiber laser-MIG hybrid welding of high strength aluminum alloy[J]. China Welding, 2021, 30(3): 7 − 11.
    [10]
    廖巍, 华学明, 张旺, 等. 基于光谱诊断的热源间距对激光-脉冲GMAW复合焊等离子体物理特性影响研究[J]. 光谱学与光谱分析, 2014, 34(5): 1173 − 1177. doi: 10.3964/j.issn.1000-0593(2014)05-1173-05

    Liao Wei, Hua Xueming, Zhang Wang, et al. Study of the effect of heat source separation distance on plasma physical properties in laser-pulsed GMAW hybrid welding based on spectral diagnosis technique[J]. Spectroscopy and Spectral Analysis, 2014, 34(5): 1173 − 1177. doi: 10.3964/j.issn.1000-0593(2014)05-1173-05
    [11]
    Kanemaru S, Sasaki T, Sato T. Study for the mechanism of TIG-MIG hybrid welding process[J]. Welding in the World, 2015, 59: 261 − 268. doi: 10.1007/s40194-014-0205-0
    [12]
    Kanemaru S, Sasaki T, Sato T, et al. Study for TIG–MIG hybrid welding process[J]. Welding in the World, 2014, 58: 11 – 18.
    [13]
    Ton H. Physical properties of the plasma-MIG welding arc[J]. Journal of Physics D:Applied Physics, 1975, 8(8): 922 − 933. doi: 10.1088/0022-3727/8/8/006
    [14]
    陈树君, 王旭平, 张亮, 等. 等离子-MIG复合焊接熔滴过渡及电弧耦合特性研究[J]. 焊接, 2014(2): 3 − 7.

    Chen Shujun, Wang Xuping, Zhang Liang. et al. Study on droplet transfer and arc coupling characteristics of plasma-MIG hybrid welding[J]. Welding & Joining, 2014(2): 3 − 7.
    [15]
    Essers W G, Liefkens A C. Plasma-MIG welding developed by Philips[J]. Machinery and Production Engineering, 1972, 1(11): 632 − 633.
    [16]
    Wu X Y, Tian R Y, Zhang Z Y, et al. Study on the arcs interaction in Plasma-GMAW hybrid welding[J]. Journal of Physics:Conference Series, 2020, 1622(1): 01203.
    [17]
    韩蛟, 韩永全, 洪海涛, 等. 铝合金等离子-MIG复合焊接电弧行为[J]. 焊接学报, 2022, 43(2): 45 − 49.

    Han Jiao, Han Yongquan, Hong Haitao, et al. Arc behavior of plasma-MIG hybrid welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2022, 43(2): 45 − 49.
    [18]
    Kazuya Ishida, Shinichi Tashiro, Kazufumi Nomura, et al. Elucidation of arc coupling mechanism in plasma-MIG hybrid welding process through spectroscopic measurement of 3D distributions of plasma temperature and iron vapor concentration[J]. Journal of Manufacturing Processes, 2022, 77: 743 − 753. doi: 10.1016/j.jmapro.2022.04.002
    [19]
    洪海涛, 韩永全, 童嘉晖, 等. 铝合金VPPA-MIG复合焊接电弧形态及伏安特性[J]. 焊接学报, 2016, 37(9): 65 − 69.

    Hong Haitao, Han Yongquan, Tong Jiahui et al. Aluminum alloy VPPA-MIG composite welding arc shape and volt – ampere characteristics[J]. Transactions of the China Welding Institution, 2016, 37(9): 65 − 69.
    [20]
    Huang Y, Li F, Zhang Y L, et al. Spectral analysis of the dynamic behavior of a welding arc during pulsed gas metal arc welding of AA5083 aluminum alloy with ER5183 wire[J]. IEEE Transactions on Plasma Science, 2019, 47(11): 5078 − 5088. doi: 10.1109/TPS.2019.2948205
    [21]
    Reis R P, Souza M D, Scotti A. Models to describe plasma jet, arc trajectory and arc blow formation in arc welding[J]. Welding in the World, 2011, 55(3-4): 24 − 32. doi: 10.1007/BF03321283
    [22]
    安藤弘平, 长谷川光雄. 焊接电弧现象[M]. 北京: 机械工业出版社. 1985.

    Ando, Hasegawa. Welding arc phenomenon [M]. Beijing: China Machine Press. 1985.
  • Related Articles

    [1]CAI Jiasi, WANG Wen, GAO Jianxin, JIN Hongxi, WEI Yanhong. Effect of oscillating laser welding parameters on energy distribution and joint forming of 5A06 thick plate aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 48-58. DOI: 10.12073/j.hjxb.20231105001
    [2]FANG Disheng, FAN Yuanyuan, HUANG Ruisheng, XU Fujia, PEI Liang, LI Jiashi. Microstructure and properties of thick 5A06 aluminum alloy by 10 kW level oscillated laser welding at vertical up position[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 68-76. DOI: 10.12073/j.hjxb.20230614005
    [3]TONG Jiahui, HAN Yongquan, HONG Haitao, SUN Zhenbang. Mechanism of weld formation in variable polarity plasma arc-MIG hybrid welding of high strength aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 69-72,91. DOI: 10.12073/j.hjxb.2018390125
    [4]CHEN Qihao, LIN Sanbao, YANG Chunli, FAN Chenglei. Analysis on Influencing Mechanism of Periodical Ultrasound on Formation of TIG Weld of Aluminum Alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 9-12.
    [5]HAN Yongquan, HONG Haitao, SHI Zengjie, YAO Qinghu. Mechanism of weld formation in laser beam-variable polarity plasma arc hybrid heating source welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 5-8.
    [6]YAN Keng, GAO Lihua, YANG Gang, XIAO Hailin. Effect of single-component activating flux on weld morphologies in A-TIG welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 54-57,62.
    [7]YANG Jing, LI Xiaoyan, GONG Shuili, CHEN Li, XU Fei. Characteristics of aluminium-lithium alloy joint formed by YAG-MIG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 83-86.
    [8]GAO Zhiguo, HUANG Jian, LI Yaling, WU Yixiong. Effect of relative position of laser beam and arc on formation of weld in laser-MIG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 69-73.
    [9]WANG Xuyou, WANG Wei, LIN Shangyang. Effect of welding parameter on weld penetration in laser-MIG hybrid welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 13-16.
    [10]YAO Wei, GONG Shui-li, CHEN Li. Effect of energy parameters on weld shaping for hybrid laser plasma welding of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 81-84.

Catalog

    Article views (110) PDF downloads (26) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return