Advanced Search
YIN Shaohua, WANG Yuwei, SUN Zhiqiang, ZHANG Zhenhua. Effect of long term high temperature aging on CGHAZ microstructure of T23 water wall welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 109-115. DOI: 10.12073/j.hjxb.20221122001
Citation: YIN Shaohua, WANG Yuwei, SUN Zhiqiang, ZHANG Zhenhua. Effect of long term high temperature aging on CGHAZ microstructure of T23 water wall welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 109-115. DOI: 10.12073/j.hjxb.20221122001

Effect of long term high temperature aging on CGHAZ microstructure of T23 water wall welded joint

More Information
  • Received Date: November 21, 2022
  • Available Online: July 17, 2023
  • The micro-mechanism of reheat crack formation in coarse grain heat affected zone (CGHAZ) of welded joint of T23 water wall tube without heat treatment after welding was analyzed by high temperature aging method.It reveals the internal reason that T23 water wall joint without heat treatment is easy to crack and leak in short-term operation after unit startup.The hardness, microstructure and precipitates of welded joints of water wall after unaged and high temperature aging treatment were systematically analyzed by means of material characterization.The results show that after aging at 530 ℃ for 100 h, the hardness of CGHAZ appears secondary hardening caused by intragranular dispersion strengthening. With the increase of aging (running) time, the hardness of CGHAZ gradually decreases, but after aging for 1000 h, the hardness of CGHAZ is still 319 HV, which is higher than the standard requirement.After aging at 600 ℃, the hardness of CGHAZ decreases with the increase of aging time. The hardness of CGHAZ decreased due to the recovery of microstructure,recrystallization, broadening of martensite lath, reduction of dislocation density, and precipitation of C and alloy elements from the matrix, which is higher than the hardness increased due to dispersion and precipitation of MX carbide in the grain. M23C6 carbide gradually precipitates and grows at grain boundaries and subgrain boundaries.

  • [1]
    周任远, 朱丽慧, 李世贤, 等. T23钢再热裂纹敏感性的改善及其组织[J]. 钢铁, 2020, 55(3): 80 − 86.

    Zhou Renyuan, Zhu Lihui, Li Shixian, et al. Improvement of reheat crack sensitivity and microstructure of T23 steel[J]. Iron and Steel, 2020, 55(3): 80 − 86.
    [2]
    Li Y, Wang X, Wang J Q, et al. Stress-relief cracking mechanism in simulated coarse-grained heat-affected zone of T23 steel[J]. Journal of Materials Processing Technology, 2019, 266: 73 − 81.
    [3]
    牛锐锋, 曹怡姗, 朱一乔, 等. 国产T23钢再热裂纹敏感性试验研究[J]. 兵器材料科学与工程, 2014, 37(5): 36 − 39.

    Niu Ruifeng, Cao Yishan, Zhu Yiqiao, et al. Experimental study on reheat crack sensitivity of domestic T23 steel[J]. Ordnance Material Science and Engineering, 2014, 37(5): 36 − 39.
    [4]
    于在松, 聂铭, 侯淑芳, 等. HCM2S(T23)钢中的碳化物及其演化规律[J]. 热力发电, 2012, 41(9): 1 − 6.

    Yu Zaisong, Nie Ming, Hou Shufang, et al. Carbides in HCM2S(T23) steel and its evolution law[J]. Thermal Power Generation, 2012, 41(9): 1 − 6.
    [5]
    Zieliński A, Golański G, Sroka M, et al. Microstructure and mechanical properties of the T23 steel after long-term ageing at elevated temperature[J]. Materials at High Temperatures, 2016, 33: 154 − 163. doi: 10.1080/09603409.2016.1139306
    [6]
    Miyata K, Igarashi M, Sawaragi Y. Effect of trace elements on creep properties of 0.06C-2.25Cr-1.6W-0.1Mo-0.25V-0.05Nb Steel[J]. ISIJ International, 1999, 39(9): 947 − 954. doi: 10.2355/isijinternational.39.947
    [7]
    Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels[J]. Materials Science & Engineering, A, 2006, 438: 237 − 240.
    [8]
    李世贤, 朱丽慧, 周任远, 等. T23低合金耐热钢再热裂纹敏感性研究[J]. 上海金属, 2020, 42(3): 7 − 11.

    Li Shixian, Zhu Lihui, Zhou Renyuan et al. Study on reheat crack sensitivity of T23 low alloy heat resistant steel[J]. Shanghai Metal, 2020, 42(3): 7 − 11.
    [9]
    周任远, 朱丽慧, 柯志刚, 等. 回火温度对改进型T23钢冲击吸收功的影响[J]. 钢铁, 2021, 56(3): 51 − 57.

    Zhou Renyuan, Zhu Lihui, Ke Zhigang et al. Influence of tempering temperature on impact absorption energy of improved T23 steel[J]. Iron and Steel, 2021, 56(3): 51 − 57.
    [10]
    王学, 李勇, 王家庆, 等. 高温时效对T23钢粗晶热影响区显微组织及再热裂纹敏感性的影响[J]. 金属学报, 2021, 57(6): 736 − 748.

    Wang Xue, Li Yong, Wang Jiaqing, et al. Effect of high temperature aging on the microstructure and reheat crack susceptibility of T23 steel coarse-grained heat-affected zone[J]. Acta Metallurgica Sinica, 2021, 57(6): 736 − 748.
    [11]
    金玉静. T23钢粗晶热影响区再热裂纹敏感性研究[D]. 上海: 上海交通大学, 2015.

    Jin Yujing. Study on reheat crack sensitivity of T23 steel coarse grain heat affected zone [D]. Shanghai: Shanghai Jiaotong University, 2015.
    [12]
    金玉静, 周巍. 改良型T23钢CGHAZ再热裂纹开裂特征[J]. 金属热处理, 2017, 42(11): 191 − 197.

    Jin Yujing, Zhou Wei. CGHAZ reheat cracking characteristics of improved T23 steel[J]. Metal Heat Treatment, 2017, 42(11): 191 − 197.
    [13]
    周任远, 朱丽慧, 李世贤, 等. 改进型T23钢的再热裂纹敏感性[J]. 金属热处理, 2020, 45(1): 20 − 25.

    Zhou Renyuan, Zhu Lihui, Li Shixian. et al. Reheat crack susceptibility of improved T23 steel[J]. Metal Heat Treatment, 2020, 45(1): 20 − 25.
    [14]
    柯志刚, 朱丽慧, 周任远, 等. 改进型T23钢冲击韧度的改善[J]. 上海金属, 2022, 44(4): 49 − 54.

    Ke Zhigang, Zhu Lihui, Zhou Renyuan, et al. Improvement of impact toughness of improved T23 steel[J]. Shanghai Metal, 2022, 44(4): 49 − 54.
  • Cited by

    Periodical cited type(39)

    1. 毛晴. 基于X射线图像和Faster R-CNN的焊缝质量检测算法研究. 机械制造. 2025(04): 30-34+40 .
    2. 李选臣. 基于区域特征推荐神经网络的数字图像信息识别方法研究. 自动化与仪器仪表. 2024(02): 51-54 .
    3. 张婷,王登武. 基于空洞分层注意力胶囊网络的X射线焊缝缺陷识别方法. 宇航计测技术. 2024(02): 45-51 .
    4. 王睿,高少泽,刘卫朋,王刚. 一种轻量级高效X射线焊缝图像缺陷检测方法. 焊接学报. 2024(07): 41-49 . 本站查看
    5. 李巍,李太江,杨略,蔡焕捷,李蕾,陈盛广,曹小龙. 改进的U-Net算法在管道内焊缝缺陷图像分割中的应用. 焊接. 2024(11): 73-80 .
    6. 左浩. 焊接机器人焊缝完整程度图像识别算法研究. 焊接技术. 2023(02): 77-82+114 .
    7. 董蕾,雷伟强,李荣涛. 基于改进YOLOv5的矿用钢丝绳芯输送带破损检测方法. 山西焦煤科技. 2023(02): 15-17 .
    8. 段岳飞,马嵩华,胡天亮. 基于全卷积神经网络的焊缝识别方法. 制造技术与机床. 2023(04): 44-49 .
    9. 滕碧红,孙海信. 基于传感器阵列的纹理图像表面缺陷识别算法. 计算机仿真. 2023(03): 285-288+301 .
    10. 陈滔. 基于改进粒子群优化的K-means聚类的焊接缺陷图像识别. 遵义师范学院学报. 2023(02): 85-88 .
    11. 吴昉,王伟,刘卫朋. 结合注意力机制和卷积神经网络的X射线焊缝缺陷检测. 科学技术与工程. 2023(08): 3387-3395 .
    12. 许馨元,李越鹏,王媛媛. 基于改进CURE聚类算法的网络用户异常行为识别方法. 微型电脑应用. 2023(05): 174-177+181 .
    13. 朱秀森,高鸿波,胡茂春,吕成澍,张士晶,王战,胡坦能. 基于暗通道技术的核电用不锈钢环焊缝DR图像质量优化. 无损检测. 2023(04): 27-32+86 .
    14. 姚远,杨济硕,沈清澜,姜建华. 基于卷积神经网络的焊缝缺陷超声图像识别方法研究. 计算机时代. 2023(07): 105-107+113 .
    15. 綦振国,杨晨菲. 卷积神经网络在射线检测中的应用浅析. 无损探伤. 2023(04): 11-13+41 .
    16. 张祯祥. 基于图像特征的高速铁路轨道焊缝缺陷检测. 现代城市轨道交通. 2023(07): 27-31 .
    17. 潘海鸿,李松莛,陈琳,邓火生,雷运理. 基于改进DG-MobileNet模型的焊缝缺陷识别方法. 组合机床与自动化加工技术. 2023(08): 127-130 .
    18. 李海瑛,李娟,张钰,王哲. 复杂背景下医学图像规则区域纹理缺陷识别. 计算机仿真. 2023(10): 291-295 .
    19. 徐海明. 基于改进时频分析的X射线管无损检测技术研究. 机械设计与制造工程. 2023(12): 87-92 .
    20. 秦志伟,陈黎. 基于图像风格迁移技术生成图像验证码研究. 计算机与数字工程. 2023(10): 2444-2451 .
    21. 陈琳,陈英蓉,庞再军,刘冠良,潘海鸿. 基于EC双流模型的焊接缺陷图像识别. 组合机床与自动化加工技术. 2022(01): 94-97 .
    22. 王睿,胡云雷,刘卫朋,李海涛. 基于边缘AI的焊缝X射线图像缺陷检测. 焊接学报. 2022(01): 79-84+118 . 本站查看
    23. 段韶鹏. 基于深度学习的网路图像缺陷识别方法. 长江信息通信. 2022(03): 89-91 .
    24. 田萌. 基于VR技术的X射线图像安检危险品自动识别. 计算技术与自动化. 2022(01): 123-128 .
    25. 张龙飞,高炜欣,冯小星. 基于卷积神经网络X射线环焊缝缺陷检测. 焊接. 2022(03): 26-34 .
    26. 杨国威,张金丽. 基于光栅投影的焊后焊缝表面三维测量. 焊接学报. 2022(04): 100-105+112+119-120 . 本站查看
    27. 刘文婧,张二清,王建国,王少锋,黄顺舟. 焊缝缺陷图像智能分类研究. 组合机床与自动化加工技术. 2022(06): 150-154 .
    28. 张思,石峰. 基于机器视觉的焊缝缺陷识别方法研究. 河南化工. 2022(06): 15-19 .
    29. 程松,戴金涛,杨洪刚,陈云霞. 基于改进型YOLOv4的焊缝图像检测与识别. 激光与光电子学进展. 2022(16): 105-111 .
    30. 代岩,黄瑞,方田,徐志坤. 基于深度学习的热轧过钢检测追踪系统. 冶金自动化. 2022(05): 76-84 .
    31. 詹志明. 基于图像处理的金属机械零件表面微缺陷检测方法. 湖南文理学院学报(自然科学版). 2022(04): 19-24 .
    32. 唐东林,杨洲,程衡,刘铭璇,周立,丁超. 浅层卷积神经网络融合Transformer的金属缺陷图像识别方法. 中国机械工程. 2022(19): 2298-2305+2316 .
    33. 刘欢,刘骁佳,王宇斐,王宁,曹立俊. 基于复合卷积层神经网络结构的焊缝缺陷分类技术. 航空学报. 2022(S1): 165-172 .
    34. 耿宾涛,贾国伟. 激光视觉图像引导机械焊缝识别方法研究. 应用激光. 2022(10): 1-8 .
    35. 王靖然,王桂棠,杨波,王志刚,符秦沈,杨圳. 深度学习在焊缝缺陷检测的应用研究综述. 机电工程技术. 2021(03): 65-68 .
    36. 张振洲,熊凌,李克波,陈刚,但斌斌,吴怀宇. 基于改进GoogLeNet的锌渣识别算法. 武汉科技大学学报. 2021(03): 182-187 .
    37. 付琳. 存在冗余特征的Relief图像缺陷识别算法研究. 电脑知识与技术. 2021(20): 106-107 .
    38. 刘霞,金忠庆. 基于改进卷积神经网络的飞机桁架焊缝缺陷识别与测试. 航空制造技术. 2021(Z2): 34-38 .
    39. 袁泽浩,李广超,解庆生. CPP900自动焊设备在长输管道焊接中的应用. 焊接. 2021(09): 57-60+64 .

    Other cited types(21)

Catalog

    Article views (178) PDF downloads (34) Cited by(60)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return