Citation: | YIN Shaohua, WANG Yuwei, SUN Zhiqiang, ZHANG Zhenhua. Effect of long term high temperature aging on CGHAZ microstructure of T23 water wall welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 109-115. DOI: 10.12073/j.hjxb.20221122001 |
The micro-mechanism of reheat crack formation in coarse grain heat affected zone (CGHAZ) of welded joint of T23 water wall tube without heat treatment after welding was analyzed by high temperature aging method.It reveals the internal reason that T23 water wall joint without heat treatment is easy to crack and leak in short-term operation after unit startup.The hardness, microstructure and precipitates of welded joints of water wall after unaged and high temperature aging treatment were systematically analyzed by means of material characterization.The results show that after aging at 530 ℃ for 100 h, the hardness of CGHAZ appears secondary hardening caused by intragranular dispersion strengthening. With the increase of aging (running) time, the hardness of CGHAZ gradually decreases, but after aging for 1000 h, the hardness of CGHAZ is still 319 HV, which is higher than the standard requirement.After aging at 600 ℃, the hardness of CGHAZ decreases with the increase of aging time. The hardness of CGHAZ decreased due to the recovery of microstructure,recrystallization, broadening of martensite lath, reduction of dislocation density, and precipitation of C and alloy elements from the matrix, which is higher than the hardness increased due to dispersion and precipitation of MX carbide in the grain. M23C6 carbide gradually precipitates and grows at grain boundaries and subgrain boundaries.
[1] |
周任远, 朱丽慧, 李世贤, 等. T23钢再热裂纹敏感性的改善及其组织[J]. 钢铁, 2020, 55(3): 80 − 86.
Zhou Renyuan, Zhu Lihui, Li Shixian, et al. Improvement of reheat crack sensitivity and microstructure of T23 steel[J]. Iron and Steel, 2020, 55(3): 80 − 86.
|
[2] |
Li Y, Wang X, Wang J Q, et al. Stress-relief cracking mechanism in simulated coarse-grained heat-affected zone of T23 steel[J]. Journal of Materials Processing Technology, 2019, 266: 73 − 81.
|
[3] |
牛锐锋, 曹怡姗, 朱一乔, 等. 国产T23钢再热裂纹敏感性试验研究[J]. 兵器材料科学与工程, 2014, 37(5): 36 − 39.
Niu Ruifeng, Cao Yishan, Zhu Yiqiao, et al. Experimental study on reheat crack sensitivity of domestic T23 steel[J]. Ordnance Material Science and Engineering, 2014, 37(5): 36 − 39.
|
[4] |
于在松, 聂铭, 侯淑芳, 等. HCM2S(T23)钢中的碳化物及其演化规律[J]. 热力发电, 2012, 41(9): 1 − 6.
Yu Zaisong, Nie Ming, Hou Shufang, et al. Carbides in HCM2S(T23) steel and its evolution law[J]. Thermal Power Generation, 2012, 41(9): 1 − 6.
|
[5] |
Zieliński A, Golański G, Sroka M, et al. Microstructure and mechanical properties of the T23 steel after long-term ageing at elevated temperature[J]. Materials at High Temperatures, 2016, 33: 154 − 163. doi: 10.1080/09603409.2016.1139306
|
[6] |
Miyata K, Igarashi M, Sawaragi Y. Effect of trace elements on creep properties of 0.06C-2.25Cr-1.6W-0.1Mo-0.25V-0.05Nb Steel[J]. ISIJ International, 1999, 39(9): 947 − 954. doi: 10.2355/isijinternational.39.947
|
[7] |
Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels[J]. Materials Science & Engineering, A, 2006, 438: 237 − 240.
|
[8] |
李世贤, 朱丽慧, 周任远, 等. T23低合金耐热钢再热裂纹敏感性研究[J]. 上海金属, 2020, 42(3): 7 − 11.
Li Shixian, Zhu Lihui, Zhou Renyuan et al. Study on reheat crack sensitivity of T23 low alloy heat resistant steel[J]. Shanghai Metal, 2020, 42(3): 7 − 11.
|
[9] |
周任远, 朱丽慧, 柯志刚, 等. 回火温度对改进型T23钢冲击吸收功的影响[J]. 钢铁, 2021, 56(3): 51 − 57.
Zhou Renyuan, Zhu Lihui, Ke Zhigang et al. Influence of tempering temperature on impact absorption energy of improved T23 steel[J]. Iron and Steel, 2021, 56(3): 51 − 57.
|
[10] |
王学, 李勇, 王家庆, 等. 高温时效对T23钢粗晶热影响区显微组织及再热裂纹敏感性的影响[J]. 金属学报, 2021, 57(6): 736 − 748.
Wang Xue, Li Yong, Wang Jiaqing, et al. Effect of high temperature aging on the microstructure and reheat crack susceptibility of T23 steel coarse-grained heat-affected zone[J]. Acta Metallurgica Sinica, 2021, 57(6): 736 − 748.
|
[11] |
金玉静. T23钢粗晶热影响区再热裂纹敏感性研究[D]. 上海: 上海交通大学, 2015.
Jin Yujing. Study on reheat crack sensitivity of T23 steel coarse grain heat affected zone [D]. Shanghai: Shanghai Jiaotong University, 2015.
|
[12] |
金玉静, 周巍. 改良型T23钢CGHAZ再热裂纹开裂特征[J]. 金属热处理, 2017, 42(11): 191 − 197.
Jin Yujing, Zhou Wei. CGHAZ reheat cracking characteristics of improved T23 steel[J]. Metal Heat Treatment, 2017, 42(11): 191 − 197.
|
[13] |
周任远, 朱丽慧, 李世贤, 等. 改进型T23钢的再热裂纹敏感性[J]. 金属热处理, 2020, 45(1): 20 − 25.
Zhou Renyuan, Zhu Lihui, Li Shixian. et al. Reheat crack susceptibility of improved T23 steel[J]. Metal Heat Treatment, 2020, 45(1): 20 − 25.
|
[14] |
柯志刚, 朱丽慧, 周任远, 等. 改进型T23钢冲击韧度的改善[J]. 上海金属, 2022, 44(4): 49 − 54.
Ke Zhigang, Zhu Lihui, Zhou Renyuan, et al. Improvement of impact toughness of improved T23 steel[J]. Shanghai Metal, 2022, 44(4): 49 − 54.
|
[1] | LE Jian, ZHANG Hua, ZHANG Qiqi, WU Jinhao. Overhead weld tracking by robots based on rotating arc sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 56-60. |
[2] | YIN Ziqiang, ZHANG Guangjun, ZHAO Huihui, YUAN Xin, WU Lin. Design of human-machine interactive robotic arc welding remanufacturing system[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 69-72. |
[3] | SHEN Junqi, HU Shengsun, FENG Shengqiang, GAO Zhonglin. Bead geometry prediction based on SVM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 103-106. |
[4] | ZHOU Lü, CHEN Shan-ben, LIN Tao, CHEN Wen-jie. Autonomous seam tracking based on local vision in arc robotic welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (1): 49-52. |
[5] | YU Xiu-ping, SUN Hua, ZHAO Xi-ren, Alexandre Gavrilov. Weld width prediction based on artificial neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (5): 17-19,45. |
[6] | CAO Hai-peng, ZHAO Xi-hua, ZHAO He. Intelligent process design of resistance spot welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 21-24. |
[7] | CAO Hai-peng, ZHAO Xi-hua, ZHAO Lei. An intelligent inference for resistance spot welding procedure parameters on CBR[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 1-3,14. |
[8] | CHEN Jun-mei, LU Hao, WANG Jian-hua, CHEN Wei-xin, HAO Da-jun. Effect of Mesh Sizes on Welding Deformation Prediction Precision of Buicks Underframe Assembly[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (2): 33-35,39. |
[9] | YE Feng, SONG Yong-lun, LI Di, CHEN Fu-gen. On-line Quality Monitoring in Robot Arc Welding Process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (1): 5-7. |
[10] | Zhao Xihua, Wang Chenyu. Parameter Selection Based on Expert System and Artificial Neural Network in Resistance Spot Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (4): 3-8. |
1. |
鲍亮亮,徐艳红,张新明,欧阳凯. 一次峰值温度对激光电弧复合焊热模拟临界再热粗晶区组织与韧性的影响. 材料导报. 2023(S2): 383-387 .
![]() |