Advanced Search
HE Qiong, WANG Honghong, WANG Yangwen, ZHANG Fuwei, LI Xiaochen. Solidification behavior and characteristics of molten pool of high manganese austenitic steel for cryogenic application[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 60-66. DOI: 10.12073/j.hjxb.20221120001
Citation: HE Qiong, WANG Honghong, WANG Yangwen, ZHANG Fuwei, LI Xiaochen. Solidification behavior and characteristics of molten pool of high manganese austenitic steel for cryogenic application[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 60-66. DOI: 10.12073/j.hjxb.20221120001

Solidification behavior and characteristics of molten pool of high manganese austenitic steel for cryogenic application

More Information
  • Received Date: November 19, 2022
  • Available Online: July 05, 2023
  • The weld metal of high manganese austenitic steel was prepared by submerged arc welding process with the main composition (wt.%) range of 0.30-0.50 C, 22.00-25.00 Mn, 3.50-5.50 Cr. The segregation behavior of alloying elements and the solidification characteristics of the molten pool of high manganese austenitic steel were studied by OM, EBSD, EPMA and other analysis methods. The analysis of microstructure and chemical composition shows that there are inhomogeneous mixed zone and partially melted zone (PMZ) in the fusion zone of high manganese austenitic steel welded joints prepared with the same composition system. The alloy element segregation zone of C, Mn and Cr produced by hot rolling in the test steel resulted in partial melting of the PMZ in the fusion zone of the welded joint, and further increases its degree of elemental segregation. The inhomogeneous mixed zone co-crystallizes in the PMZ in the form of cellular crystals, and the distribution of the alloy elements continues the distribution in the PMZ. The molten pool co-crystallizes in the form of cellular crystals on the protruding solid phase peninsula on the PMZ. The width of the initial cytosolic crystals correlates is intrinsically related to the spacing of the hot-rolled segregation bands of the base metal, which is produced by the segregation of alloying elements in the hot rolled strip in the partially melted zone and the concave solid-liquid interface formed by its partial melting.
  • Bouaziz O, Allain S, Scott C P, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Current Opinion In Solid State and Materials Science, 2011, 15(4): 141 − 168. doi: 10.1016/j.cossms.2011.04.002
    Luo Q, Wang H H, Li G Q, et al. On mechanical properties of novel high-Mn cryogenic steel in terms of SFE and microstructural evolution[J]. Materials Science and Engineering:A, 2019, 753: 91 − 8. doi: 10.1016/j.msea.2019.02.093
    Choi J K, Lee S G, Park Y H, et al. High manganese austenitic steel for cryogenic applications[C]//ISOPE International Ocean and Polar Engineering Conference. ISOPE, 2012: ISOPE-I-12-599.
    Grässel O, Krüger L, Frommeyer G, et al. High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application[J]. International Journal of Plasticity, 2000, 16(10-11): 1391 − 1409. doi: 10.1016/S0749-6419(00)00015-2
    郭伟, 蔡艳, 华学明. LNG用低温高锰钢及其焊接技术发展[J]. 电焊机, 2020, 50(11): 7 − 11. doi: 10.7512/j.issn.1001-2303.2020.11.02

    Guo Wei, Cai Yan, Hua Xueming. Development of low-temperature high manganese steel and its welding technology in LNG field[J]. Electric Welding Machine, 2020, 50(11): 7 − 11. doi: 10.7512/j.issn.1001-2303.2020.11.02
    De Cooman B C. High Mn TWIP steel and medium Mn steel[M]//Automotive Steels. Woodhead Publishing, 2017: 317-385.
    De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels[J]. Acta Materialia, 2018, 142: 283 − 362. doi: 10.1016/j.actamat.2017.06.046
    Park G, Jeong S, Lee C. Fusion weldabilities of advanced high manganese steels: a review[J]. Metals and Materials International, 2021, 27: 2046 − 2058. doi: 10.1007/s12540-020-00706-9
    Ma L, Wei Y, Hou L, et al. Microstructure and mechanical properties of TWIP steel joints[J]. Journal of Iron and Steel Research International, 2014, 21(8): 749 − 756. doi: 10.1016/S1006-706X(14)60137-0
    Saha D C, Cho Y, Park Y D. Metallographic and fracture characteristics of resistance spot welded TWIP steels[J]. Science and Technology of Welding and Joining, 2013, 18(8): 711 − 720. doi: 10.1179/1362171813Y.0000000151
    Wang T, Zhang M, Xiong W, et al. Microstructure and tensile properties of the laser welded TWIP steel and the deformation behavior of the fusion zone[J]. Materials & Design, 2015, 83: 103 − 111.
    Choi M, Lee J, Nam H, et al. Tensile and microstructural characteristics of Fe-24Mn steel welds for cryogenic applications[J]. Metals and Materials International, 2020, 26: 240 − 247. doi: 10.1007/s12540-019-00320-4
    Mujica L, Weber S, Thomy C, et al. Microstructure and mechanical properties of laser welded austenitic high manganese steels[J]. Science and Technology of Welding and Joining, 2009, 14(6): 517 − 522. doi: 10.1179/136217109X434243
    Roncery L M, Weber S, Theisen W. Welding of twinning-induced plasticity steels[J]. Scripta Materialia, 2012, 66(12): 997 − 1001. doi: 10.1016/j.scriptamat.2011.11.041
    Fan X, Li Y, Qi Y, et al. Mechanical properties of cryogenic high manganese steel joints filled with nickel-based materials by SMAW and SAW[J]. Materials Letters, 2021, 304: 130596. doi: 10.1016/j.matlet.2021.130596
    邓浩祥, 刘志宏, 王幸福, 等. 基于焊接热模拟的高锰TWIP钢热影响区组织与性能[J]. 焊接学报, 2023, 44(2): 83 − 89. doi: 10.12073/j.hjxb.20220325001

    Deng Haoxiang, Liu Zhihong, Wang Xingfu, et al. Microstructure and mechanical properties of heat affected zone for high-Mn TWIP steel based on welding thermal simulation[J]. Transactions of the China Welding Institution, 2023, 44(2): 83 − 89. doi: 10.12073/j.hjxb.20220325001
    Sutton B J, Lippold J C. Effect of alloying additions on the solidification cracking susceptibility of high manganese steel weld metals[C]//The Twenty-third International Offshore and Polar Engineering Conference. OnePetro, 2013.
    张汉谦, 吴宇, 王宝, 等. 熔化焊接头特征区域研究[J]. 材料科学与工艺, 1994, 2(3): 99 − 103.

    Zhang Hanqian, Wu Yu, Wang Bao, et al. Study on the characteristic zones of fusion welding joint[J]. Material Science and Technology, 1994, 2(3): 99 − 103.
    Kusakin P, Belyakov A, Haase C, et al. Microstructure evolution and strengthening mechanisms of Fe–23Mn–0.3C–1.5Al TWIP steel during cold rolling[J]. Materials Science and Engineering:A, 2014, 617: 52 − 60. doi: 10.1016/j.msea.2014.08.051
    Escobar D P, de Dafé S S F, Santos D B. Martensite reversion and texture formation in 17Mn-0.06 C TRIP/TWIP steel after hot cold rolling and annealing[J]. Journal of Materials Research and Technology, 2015, 4(2): 162 − 170. doi: 10.1016/j.jmrt.2014.10.004
    Park M, Kang M, Park G W, et al. The effects of post weld heat treatment for welded high-Mn austenitic steels using the submerged arc welding method[J]. Journal of Materials Research and Technology, 2022, 18: 4497 − 4512. doi: 10.1016/j.jmrt.2022.04.103
    Battle T P, Pehlke R D. Equilibrium partition coefficients in iron-based alloys[J]. Metallurgical and Materials Transactions B, 1989, 20: 149 − 160. doi: 10.1007/BF02825596
    Kurz W, Fisher D J. Fundamentals of Solidification[M]. 4 th ed. Switzerland: Trans Tech Publications Ltd, 2017.
  • Related Articles

    [1]GUO Xiao, XU Kai, HUO Shubin, CHEN Peiyin, CHEN Bo. Investigation on the solidification segregation behavior of GTAW nickel alloy deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 105-108. DOI: 10.12073/j.hjxb.2019400190
    [2]FANG Kun, SONG Kuijing, Liang Ning, YANG Jianguo, FANG Hongyuan. Effect of welding segregation on microstructure and mechanical properties of regenerated weld for nanostructured bainite steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 71-74.
    [3]YE Xin, HUA Xueming, WU Yixiong. Microstructure evolution of HAZ of TIG welded Ni-based 718 superalloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 97-100.
    [4]FANG Kun, SONG Kuijing, YANG Jianguo, LIU Xuisong, ZHAO Delong, FANG Hongyuan. Microstructure and properties of nanobainite steel joint by TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (8): 13-16.
    [5]QI Yanchang, PENG Yun, WEI Jinshan, TIAN Zhiling. Effect of carbon on microstructure and properties of C-1.5Mn-2.5Ni-0.5Cr-0.5Mo high strength steel weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 41-44.
    [6]LI Chao, LIANG Yuanyuan, SHEN Canduo, ZHU Sheng. Cracking formation mechanism of mild steel parts fabricated by surfacing rapid forming[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (9): 53-56.
    [7]ZHOU Chengshuang, ZHENG Shuqi, CHEN Changfeng, CHEN Song. Influence of cell segregation inclusion of alloying elements on initiation of hydrogen blistering in heat-affected zone of acicular ferrite steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (6): 5-8.
    [8]CHEN Xue-ding, SONG Qiang, YU Wei-yuan, SONG Chong-yang. Corrosion of brazed joints with aluminum-based filler metals in vacuum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 40-43.
    [9]Lu Wenjiang, Yaoshikuni Nakao, Kenji Shinozaki. Susceptibility of liquation crack in HAZ of nickel base alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (3): 186-194.
    [10]Chen Xiaofeng, Si Zhongyao, Li Zhongku, Xiao Youhong. THE EFFECT OF DISTRIBUTION OF SOLUTE CONCENTRATION ON THE SOLIDIFICATION AND CRYSTALLIZATION IN THE WELD POOL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1987, (1): 45-51.
  • Cited by

    Periodical cited type(12)

    1. 周浩南,孙文磊,王伟,张志虎. 面向涂层裂纹的激光熔覆预测模型研究. 热加工工艺. 2024(14): 27-32 .
    2. 郑世茂,刘玉国,王豪,王新佩,陈洪堂. 长直焊缝自动焊接设备研究. 南方农机. 2023(10): 127-128+154 .
    3. 王颖,高胜,吴立明. 基于胶囊网络的TIG熔透预测. 焊接. 2023(04): 15-20+28 .
    4. 黄威威,游德勇,高向东,张艳喜,黄宇辉. 基于相关分析和神经网络的激光焊接稳态识别. 激光技术. 2022(03): 312-319 .
    5. 吴月玉,张弓,林群煦,侯至丞,杨文林. 机器人TIG焊接的焊缝形貌遗传神经网络预测. 制造业自动化. 2022(07): 86-90 .
    6. 刘秀航,黄宇辉,张艳喜,高向东. 基于BP神经网络补偿卡尔曼滤波的激光-MIG复合焊缝熔宽在线检测. 中国激光. 2022(16): 115-121 .
    7. 陶永,兰江波,任帆,王田苗,江山,高赫,温宇方. 基于自适应模糊神经网络的机器人焊接焊缝外形预测方法. 计算机集成制造系统. 2022(11): 3643-3651 .
    8. 刘天元,鲍劲松,汪俊亮,顾俊. 融合时序信息的激光焊接熔透状态识别方法. 中国激光. 2021(06): 228-238 .
    9. 吴月玉,张弓,林群煦,侯至丞,杨文林,刘胜祥,徐群华,张雨航. 焊接机器人特征参数预测方法的研究综述与展望. 机床与液压. 2021(15): 168-173+199 .
    10. 成慧翔,马艳娥,李新卫. 基于改进神经网络的激光焊接偏差智能识别研究. 激光杂志. 2021(12): 165-169 .
    11. 火巧英,闫海宁,涂本荣,陆安进. 焊接工艺参数对Q345NQR2耐候钢激光焊焊缝成形的影响. 焊接技术. 2020(08): 16-18+105-106 .
    12. 范鹏飞,张冠. 基于线性回归和神经网络的金属陶瓷激光熔覆层形貌预测. 表面技术. 2019(12): 353-359+368 .

    Other cited types(6)

Catalog

    Article views (233) PDF downloads (92) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return