Citation: | HE Qiong, WANG Honghong, WANG Yangwen, ZHANG Fuwei, LI Xiaochen. Solidification behavior and characteristics of molten pool of high manganese austenitic steel for cryogenic application[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 60-66. DOI: 10.12073/j.hjxb.20221120001 |
Bouaziz O, Allain S, Scott C P, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Current Opinion In Solid State and Materials Science, 2011, 15(4): 141 − 168. doi: 10.1016/j.cossms.2011.04.002
|
Luo Q, Wang H H, Li G Q, et al. On mechanical properties of novel high-Mn cryogenic steel in terms of SFE and microstructural evolution[J]. Materials Science and Engineering:A, 2019, 753: 91 − 8. doi: 10.1016/j.msea.2019.02.093
|
Choi J K, Lee S G, Park Y H, et al. High manganese austenitic steel for cryogenic applications[C]//ISOPE International Ocean and Polar Engineering Conference. ISOPE, 2012: ISOPE-I-12-599.
|
Grässel O, Krüger L, Frommeyer G, et al. High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application[J]. International Journal of Plasticity, 2000, 16(10-11): 1391 − 1409. doi: 10.1016/S0749-6419(00)00015-2
|
郭伟, 蔡艳, 华学明. LNG用低温高锰钢及其焊接技术发展[J]. 电焊机, 2020, 50(11): 7 − 11. doi: 10.7512/j.issn.1001-2303.2020.11.02
Guo Wei, Cai Yan, Hua Xueming. Development of low-temperature high manganese steel and its welding technology in LNG field[J]. Electric Welding Machine, 2020, 50(11): 7 − 11. doi: 10.7512/j.issn.1001-2303.2020.11.02
|
De Cooman B C. High Mn TWIP steel and medium Mn steel[M]//Automotive Steels. Woodhead Publishing, 2017: 317-385.
|
De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels[J]. Acta Materialia, 2018, 142: 283 − 362. doi: 10.1016/j.actamat.2017.06.046
|
Park G, Jeong S, Lee C. Fusion weldabilities of advanced high manganese steels: a review[J]. Metals and Materials International, 2021, 27: 2046 − 2058. doi: 10.1007/s12540-020-00706-9
|
Ma L, Wei Y, Hou L, et al. Microstructure and mechanical properties of TWIP steel joints[J]. Journal of Iron and Steel Research International, 2014, 21(8): 749 − 756. doi: 10.1016/S1006-706X(14)60137-0
|
Saha D C, Cho Y, Park Y D. Metallographic and fracture characteristics of resistance spot welded TWIP steels[J]. Science and Technology of Welding and Joining, 2013, 18(8): 711 − 720. doi: 10.1179/1362171813Y.0000000151
|
Wang T, Zhang M, Xiong W, et al. Microstructure and tensile properties of the laser welded TWIP steel and the deformation behavior of the fusion zone[J]. Materials & Design, 2015, 83: 103 − 111.
|
Choi M, Lee J, Nam H, et al. Tensile and microstructural characteristics of Fe-24Mn steel welds for cryogenic applications[J]. Metals and Materials International, 2020, 26: 240 − 247. doi: 10.1007/s12540-019-00320-4
|
Mujica L, Weber S, Thomy C, et al. Microstructure and mechanical properties of laser welded austenitic high manganese steels[J]. Science and Technology of Welding and Joining, 2009, 14(6): 517 − 522. doi: 10.1179/136217109X434243
|
Roncery L M, Weber S, Theisen W. Welding of twinning-induced plasticity steels[J]. Scripta Materialia, 2012, 66(12): 997 − 1001. doi: 10.1016/j.scriptamat.2011.11.041
|
Fan X, Li Y, Qi Y, et al. Mechanical properties of cryogenic high manganese steel joints filled with nickel-based materials by SMAW and SAW[J]. Materials Letters, 2021, 304: 130596. doi: 10.1016/j.matlet.2021.130596
|
邓浩祥, 刘志宏, 王幸福, 等. 基于焊接热模拟的高锰TWIP钢热影响区组织与性能[J]. 焊接学报, 2023, 44(2): 83 − 89. doi: 10.12073/j.hjxb.20220325001
Deng Haoxiang, Liu Zhihong, Wang Xingfu, et al. Microstructure and mechanical properties of heat affected zone for high-Mn TWIP steel based on welding thermal simulation[J]. Transactions of the China Welding Institution, 2023, 44(2): 83 − 89. doi: 10.12073/j.hjxb.20220325001
|
Sutton B J, Lippold J C. Effect of alloying additions on the solidification cracking susceptibility of high manganese steel weld metals[C]//The Twenty-third International Offshore and Polar Engineering Conference. OnePetro, 2013.
|
张汉谦, 吴宇, 王宝, 等. 熔化焊接头特征区域研究[J]. 材料科学与工艺, 1994, 2(3): 99 − 103.
Zhang Hanqian, Wu Yu, Wang Bao, et al. Study on the characteristic zones of fusion welding joint[J]. Material Science and Technology, 1994, 2(3): 99 − 103.
|
Kusakin P, Belyakov A, Haase C, et al. Microstructure evolution and strengthening mechanisms of Fe–23Mn–0.3C–1.5Al TWIP steel during cold rolling[J]. Materials Science and Engineering:A, 2014, 617: 52 − 60. doi: 10.1016/j.msea.2014.08.051
|
Escobar D P, de Dafé S S F, Santos D B. Martensite reversion and texture formation in 17Mn-0.06 C TRIP/TWIP steel after hot cold rolling and annealing[J]. Journal of Materials Research and Technology, 2015, 4(2): 162 − 170. doi: 10.1016/j.jmrt.2014.10.004
|
Park M, Kang M, Park G W, et al. The effects of post weld heat treatment for welded high-Mn austenitic steels using the submerged arc welding method[J]. Journal of Materials Research and Technology, 2022, 18: 4497 − 4512. doi: 10.1016/j.jmrt.2022.04.103
|
Battle T P, Pehlke R D. Equilibrium partition coefficients in iron-based alloys[J]. Metallurgical and Materials Transactions B, 1989, 20: 149 − 160. doi: 10.1007/BF02825596
|
Kurz W, Fisher D J. Fundamentals of Solidification[M]. 4 th ed. Switzerland: Trans Tech Publications Ltd, 2017.
|
[1] | LIU Xudong, SA Zicheng, FENG Jiayun, LI Haozhe, TIAN Yanhong. The Development Status On Advanced Packaging Copper Pillar Bump Interconnection Technology and Reliability[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240718001 |
[2] | YANG Dongsheng, ZHANG He, FENG Jiayun, SA Zicheng, WANG Chenxi, TIAN Yanhong. Research progress on micro/nano joining technologies and failure behaviors in electronic packaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 126-136. DOI: 10.12073/j.hjxb.20220702003 |
[3] | SUN Lei, ZHANG Yi, CHEN Minghe, ZHANG Liang, MIAO Naiming. Finite element analysis of solder joint reliability of 3D packaging chip[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 49-53. DOI: 10.12073/j.hjxb.20201021002 |
[4] | YANG Hong, LI Yulong, DONG Yangping, CUI Qingbo. Ultrasonic welding packaging of FBG and its bending sensing characteristics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 69-75. DOI: 10.12073/j.hjxb.2019400211 |
[5] | HAN Lishuai, HUANG Chunyue, LIANG Ying, KUANG Bing, HUANG Genxin. Analysis of stress strain and shape size optimization of 3D micro-scale CSP solder joints in random vibration[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 64-70. DOI: 10.12073/j.hjxb.2019400156 |
[6] | XIONG Mingyue1, ZHANG Liang1,2, LIU Zhiquan2, YANG Fan1, ZHONG Sujuan3, MA Jia3, BAO Li3. Structure optimization design of CSP device based on Taguchi method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 51-54. DOI: 10.12073/j.hjxb.2018390121 |
[7] | CUI Haipo, CHENG Enqing. Random vibration analysis of different electronic packaging structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 91-94. DOI: 10.12073/j.hjxb.20150606002 |
[8] | NAN Qiuming, WU Haoying, LI Sheng. Metallization packaging method for FBG vibration sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 17-20. |
[9] | WANG Bo, MO Liping, WU Fengshun, XIA Weisheng, WU Yiping. Microstructure of solder joints with micron stand-off height in electronic packaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 25-28. |
[10] | YE Huan, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on reliability of lead-free soldered joints for CSP device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 93-96. |
1. |
蒋宝,徐富家,杨义成,聂鑫,宋扬,刘孔丰. 万瓦级激光-电弧复合穿透焊接成形缺陷研究. 电焊机. 2022(10): 15-22 .
![]() |