Advanced Search
HE Qiong, WANG Honghong, WANG Yangwen, ZHANG Fuwei, LI Xiaochen. Solidification behavior and characteristics of molten pool of high manganese austenitic steel for cryogenic application[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 60-66. DOI: 10.12073/j.hjxb.20221120001
Citation: HE Qiong, WANG Honghong, WANG Yangwen, ZHANG Fuwei, LI Xiaochen. Solidification behavior and characteristics of molten pool of high manganese austenitic steel for cryogenic application[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 60-66. DOI: 10.12073/j.hjxb.20221120001

Solidification behavior and characteristics of molten pool of high manganese austenitic steel for cryogenic application

More Information
  • Received Date: November 19, 2022
  • Available Online: July 05, 2023
  • The weld metal of high manganese austenitic steel was prepared by submerged arc welding process with the main composition (wt.%) range of 0.30-0.50 C, 22.00-25.00 Mn, 3.50-5.50 Cr. The segregation behavior of alloying elements and the solidification characteristics of the molten pool of high manganese austenitic steel were studied by OM, EBSD, EPMA and other analysis methods. The analysis of microstructure and chemical composition shows that there are inhomogeneous mixed zone and partially melted zone (PMZ) in the fusion zone of high manganese austenitic steel welded joints prepared with the same composition system. The alloy element segregation zone of C, Mn and Cr produced by hot rolling in the test steel resulted in partial melting of the PMZ in the fusion zone of the welded joint, and further increases its degree of elemental segregation. The inhomogeneous mixed zone co-crystallizes in the PMZ in the form of cellular crystals, and the distribution of the alloy elements continues the distribution in the PMZ. The molten pool co-crystallizes in the form of cellular crystals on the protruding solid phase peninsula on the PMZ. The width of the initial cytosolic crystals correlates is intrinsically related to the spacing of the hot-rolled segregation bands of the base metal, which is produced by the segregation of alloying elements in the hot rolled strip in the partially melted zone and the concave solid-liquid interface formed by its partial melting.
  • Bouaziz O, Allain S, Scott C P, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Current Opinion In Solid State and Materials Science, 2011, 15(4): 141 − 168. doi: 10.1016/j.cossms.2011.04.002
    Luo Q, Wang H H, Li G Q, et al. On mechanical properties of novel high-Mn cryogenic steel in terms of SFE and microstructural evolution[J]. Materials Science and Engineering:A, 2019, 753: 91 − 8. doi: 10.1016/j.msea.2019.02.093
    Choi J K, Lee S G, Park Y H, et al. High manganese austenitic steel for cryogenic applications[C]//ISOPE International Ocean and Polar Engineering Conference. ISOPE, 2012: ISOPE-I-12-599.
    Grässel O, Krüger L, Frommeyer G, et al. High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application[J]. International Journal of Plasticity, 2000, 16(10-11): 1391 − 1409. doi: 10.1016/S0749-6419(00)00015-2
    郭伟, 蔡艳, 华学明. LNG用低温高锰钢及其焊接技术发展[J]. 电焊机, 2020, 50(11): 7 − 11. doi: 10.7512/j.issn.1001-2303.2020.11.02

    Guo Wei, Cai Yan, Hua Xueming. Development of low-temperature high manganese steel and its welding technology in LNG field[J]. Electric Welding Machine, 2020, 50(11): 7 − 11. doi: 10.7512/j.issn.1001-2303.2020.11.02
    De Cooman B C. High Mn TWIP steel and medium Mn steel[M]//Automotive Steels. Woodhead Publishing, 2017: 317-385.
    De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels[J]. Acta Materialia, 2018, 142: 283 − 362. doi: 10.1016/j.actamat.2017.06.046
    Park G, Jeong S, Lee C. Fusion weldabilities of advanced high manganese steels: a review[J]. Metals and Materials International, 2021, 27: 2046 − 2058. doi: 10.1007/s12540-020-00706-9
    Ma L, Wei Y, Hou L, et al. Microstructure and mechanical properties of TWIP steel joints[J]. Journal of Iron and Steel Research International, 2014, 21(8): 749 − 756. doi: 10.1016/S1006-706X(14)60137-0
    Saha D C, Cho Y, Park Y D. Metallographic and fracture characteristics of resistance spot welded TWIP steels[J]. Science and Technology of Welding and Joining, 2013, 18(8): 711 − 720. doi: 10.1179/1362171813Y.0000000151
    Wang T, Zhang M, Xiong W, et al. Microstructure and tensile properties of the laser welded TWIP steel and the deformation behavior of the fusion zone[J]. Materials & Design, 2015, 83: 103 − 111.
    Choi M, Lee J, Nam H, et al. Tensile and microstructural characteristics of Fe-24Mn steel welds for cryogenic applications[J]. Metals and Materials International, 2020, 26: 240 − 247. doi: 10.1007/s12540-019-00320-4
    Mujica L, Weber S, Thomy C, et al. Microstructure and mechanical properties of laser welded austenitic high manganese steels[J]. Science and Technology of Welding and Joining, 2009, 14(6): 517 − 522. doi: 10.1179/136217109X434243
    Roncery L M, Weber S, Theisen W. Welding of twinning-induced plasticity steels[J]. Scripta Materialia, 2012, 66(12): 997 − 1001. doi: 10.1016/j.scriptamat.2011.11.041
    Fan X, Li Y, Qi Y, et al. Mechanical properties of cryogenic high manganese steel joints filled with nickel-based materials by SMAW and SAW[J]. Materials Letters, 2021, 304: 130596. doi: 10.1016/j.matlet.2021.130596
    邓浩祥, 刘志宏, 王幸福, 等. 基于焊接热模拟的高锰TWIP钢热影响区组织与性能[J]. 焊接学报, 2023, 44(2): 83 − 89. doi: 10.12073/j.hjxb.20220325001

    Deng Haoxiang, Liu Zhihong, Wang Xingfu, et al. Microstructure and mechanical properties of heat affected zone for high-Mn TWIP steel based on welding thermal simulation[J]. Transactions of the China Welding Institution, 2023, 44(2): 83 − 89. doi: 10.12073/j.hjxb.20220325001
    Sutton B J, Lippold J C. Effect of alloying additions on the solidification cracking susceptibility of high manganese steel weld metals[C]//The Twenty-third International Offshore and Polar Engineering Conference. OnePetro, 2013.
    张汉谦, 吴宇, 王宝, 等. 熔化焊接头特征区域研究[J]. 材料科学与工艺, 1994, 2(3): 99 − 103.

    Zhang Hanqian, Wu Yu, Wang Bao, et al. Study on the characteristic zones of fusion welding joint[J]. Material Science and Technology, 1994, 2(3): 99 − 103.
    Kusakin P, Belyakov A, Haase C, et al. Microstructure evolution and strengthening mechanisms of Fe–23Mn–0.3C–1.5Al TWIP steel during cold rolling[J]. Materials Science and Engineering:A, 2014, 617: 52 − 60. doi: 10.1016/j.msea.2014.08.051
    Escobar D P, de Dafé S S F, Santos D B. Martensite reversion and texture formation in 17Mn-0.06 C TRIP/TWIP steel after hot cold rolling and annealing[J]. Journal of Materials Research and Technology, 2015, 4(2): 162 − 170. doi: 10.1016/j.jmrt.2014.10.004
    Park M, Kang M, Park G W, et al. The effects of post weld heat treatment for welded high-Mn austenitic steels using the submerged arc welding method[J]. Journal of Materials Research and Technology, 2022, 18: 4497 − 4512. doi: 10.1016/j.jmrt.2022.04.103
    Battle T P, Pehlke R D. Equilibrium partition coefficients in iron-based alloys[J]. Metallurgical and Materials Transactions B, 1989, 20: 149 − 160. doi: 10.1007/BF02825596
    Kurz W, Fisher D J. Fundamentals of Solidification[M]. 4 th ed. Switzerland: Trans Tech Publications Ltd, 2017.
  • Related Articles

    [1]KANG Tianyou, SUN Lei, WANG Xinghua, ZHANG Yuxiang, WANG Renfu, ZHANG Youjing. Strengthing and toughening mechanism of weld metal of 690 MPa grade high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240108001
    [2]GUO Xiao, XU Kai, HUO Shubin, CHEN Peiyin, CHEN Bo. Investigation on the solidification segregation behavior of GTAW nickel alloy deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 105-108. DOI: 10.12073/j.hjxb.2019400190
    [3]JIU Yongtao1, XUAN Qingqing2, GAO Ya1, ZHONG Sujuan1, WANG Dezhi3. Change laws of micro-composition and microstructure of silver-based brazing filler metal ingot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 82-86. DOI: 10.12073/j.hjxb.2018390128
    [4]LU Quanbin, LONG Weimin, DU Quanbin, ZHANG Qingke. Regulatory effect of Sc and La on grain boundary segregation of impurities in Al-Mg welding materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 53-56.
    [5]FANG Kun, SONG Kuijing, Liang Ning, YANG Jianguo, FANG Hongyuan. Effect of welding segregation on microstructure and mechanical properties of regenerated weld for nanostructured bainite steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 71-74.
    [6]FANG Kun, SONG Kuijing, YANG Jianguo, LIU Xuisong, ZHAO Delong, FANG Hongyuan. Microstructure and properties of nanobainite steel joint by TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (8): 13-16.
    [7]QI Yanchang, PENG Yun, WEI Jinshan, TIAN Zhiling. Effect of carbon on microstructure and properties of C-1.5Mn-2.5Ni-0.5Cr-0.5Mo high strength steel weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 41-44.
    [8]LI Chao, LIANG Yuanyuan, SHEN Canduo, ZHU Sheng. Cracking formation mechanism of mild steel parts fabricated by surfacing rapid forming[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (9): 53-56.
    [9]MA Rui, DONG Zhibo, WEI Yanhong, ZHAN Xiaohong. Simulation of solidification microstructure evolution in molten pool of nickel base alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (7): 43-46.
    [10]YAO Shang-wei, ZHAO Lu-yu, XU Ke, WANG Ren-fu. Effect of welding thermal cycle on toughness of continuous cast-ing steel center[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (10): 97-100.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (224) PDF downloads (91) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return